These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 9230059)
1. Functional differences in the interaction of arrestin and its splice variant, p44, with rhodopsin. Pulvermüller A; Maretzki D; Rudnicka-Nawrot M; Smith WC; Palczewski K; Hofmann KP Biochemistry; 1997 Jul; 36(30):9253-60. PubMed ID: 9230059 [TBL] [Abstract][Full Text] [Related]
2. Differential phosphorylation of the rhodopsin cytoplasmic tail mediates the binding of arrestin and its splice variant, p44. Ascano M; Robinson PR Biochemistry; 2006 Feb; 45(7):2398-407. PubMed ID: 16475829 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of p44, a constitutively active splice variant of visual arrestin. Granzin J; Cousin A; Weirauch M; Schlesinger R; Büldt G; Batra-Safferling R J Mol Biol; 2012 Mar; 416(5):611-8. PubMed ID: 22306737 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a truncated form of arrestin isolated from bovine rod outer segments. Palczewski K; Buczylko J; Ohguro H; Annan RS; Carr SA; Crabb JW; Kaplan MW; Johnson RS; Walsh KA Protein Sci; 1994 Feb; 3(2):314-24. PubMed ID: 8003967 [TBL] [Abstract][Full Text] [Related]
5. Arrestin residues involved in the functional binding of arrestin to phosphorylated, photolyzed rhodopsin. Ascano MT; Smith WC; Gregurick SK; Robinson PR Mol Vis; 2006 Dec; 12():1516-25. PubMed ID: 17167410 [TBL] [Abstract][Full Text] [Related]
6. Phosphorylation stabilizes the active conformation of rhodopsin. Gibson SK; Parkes JH; Liebman PA Biochemistry; 1998 Aug; 37(33):11393-8. PubMed ID: 9708973 [TBL] [Abstract][Full Text] [Related]
7. Direct binding of visual arrestin to a rhodopsin carboxyl terminal synthetic phosphopeptide. Liu P; Roush ED; Bruno J; Osawa S; Weiss ER Mol Vis; 2004 Oct; 10():712-9. PubMed ID: 15480300 [TBL] [Abstract][Full Text] [Related]
8. Identification of regions of arrestin that bind to rhodopsin. Smith WC; McDowell JH; Dugger DR; Miller R; Arendt A; Popp MP; Hargrave PA Biochemistry; 1999 Mar; 38(9):2752-61. PubMed ID: 10052946 [TBL] [Abstract][Full Text] [Related]
9. Deactivation of phosphorylated and nonphosphorylated rhodopsin by arrestin splice variants. Burns ME; Mendez A; Chen CK; Almuete A; Quillinan N; Simon MI; Baylor DA; Chen J J Neurosci; 2006 Jan; 26(3):1036-44. PubMed ID: 16421323 [TBL] [Abstract][Full Text] [Related]
10. Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin. Pulvermüller A; Schroder K; Fischer T; Hofmann KP J Biol Chem; 2000 Dec; 275(48):37679-85. PubMed ID: 10969086 [TBL] [Abstract][Full Text] [Related]
11. Arrestin and its splice variant Arr1-370A (p44). Mechanism and biological role of their interaction with rhodopsin. Schröder K; Pulvermüller A; Hofmann KP J Biol Chem; 2002 Nov; 277(46):43987-96. PubMed ID: 12194979 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. Krupnick JG; Gurevich VV; Benovic JL J Biol Chem; 1997 Jul; 272(29):18125-31. PubMed ID: 9218446 [TBL] [Abstract][Full Text] [Related]
13. Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Schleicher A; Kühn H; Hofmann KP Biochemistry; 1989 Feb; 28(4):1770-5. PubMed ID: 2719933 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation alters the pH-dependent active state equilibrium of rhodopsin by modulating the membrane surface potential. Gibson SK; Parkes JH; Liebman PA Biochemistry; 1999 Aug; 38(34):11103-14. PubMed ID: 10460166 [TBL] [Abstract][Full Text] [Related]
15. Binding of arrestin to cytoplasmic loop mutants of bovine rhodopsin. Raman D; Osawa S; Weiss ER Biochemistry; 1999 Apr; 38(16):5117-23. PubMed ID: 10213616 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation modulates the affinity of light-activated rhodopsin for G protein and arrestin. Gibson SK; Parkes JH; Liebman PA Biochemistry; 2000 May; 39(19):5738-49. PubMed ID: 10801324 [TBL] [Abstract][Full Text] [Related]
17. The arrestin-bound conformation and dynamics of the phosphorylated carboxy-terminal region of rhodopsin. Kisselev OG; McDowell JH; Hargrave PA FEBS Lett; 2004 Apr; 564(3):307-11. PubMed ID: 15111114 [TBL] [Abstract][Full Text] [Related]
18. N-terminal and C-terminal domains of arrestin both contribute in binding to rhodopsin. Skegro D; Pulvermüller A; Krafft B; Granzin J; Hofmann KP; Büldt G; Schlesinger R Photochem Photobiol; 2007; 83(2):385-92. PubMed ID: 17132044 [TBL] [Abstract][Full Text] [Related]
19. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes. Parkes JH; Gibson SK; Liebman PA Biochemistry; 1999 May; 38(21):6862-78. PubMed ID: 10346908 [TBL] [Abstract][Full Text] [Related]
20. Function of the farnesyl moiety in visual signalling. McCarthy NE; Akhtar M Biochem J; 2000 Apr; 347 Pt 1(Pt 1):163-71. PubMed ID: 10727415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]