These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 9230062)

  • 1. Reconstitution of the holoenzyme form of Escherichia coli porphobilinogen deaminase from apoenzyme with porphobilinogen and preuroporphyrinogen: a study using circular dichroism spectroscopy.
    Awan SJ; Siligardi G; Shoolingin-Jordan PM; Warren MJ
    Biochemistry; 1997 Jul; 36(30):9273-82. PubMed ID: 9230062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery that the assembly of the dipyrromethane cofactor of porphobilinogen deaminase holoenzyme proceeds initially by the reaction of preuroporphyrinogen with the apoenzyme.
    Shoolingin-Jordan PM; Warren MJ; Awan SJ
    Biochem J; 1996 Jun; 316 ( Pt 2)(Pt 2):373-6. PubMed ID: 8687374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of apo-porphobilinogen deaminase: structural changes induced by cofactor binding.
    Scott AI; Clemens KR; Stolowich NJ; Santander PJ; Gonzalez MD; Roessner CA
    FEBS Lett; 1989 Jan; 242(2):319-24. PubMed ID: 2644132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dipyrromethane cofactor assembly of porphobilinogen deaminase: formation of apoenzyme and preparation of holoenzyme.
    Shoolingin-Jordan PM; Warren MJ; Awan SJ
    Methods Enzymol; 1997; 281():317-27. PubMed ID: 9250996
    [No Abstract]   [Full Text] [Related]  

  • 5. The three-dimensional structure of Escherichia coli porphobilinogen deaminase at 1.76-A resolution.
    Louie GV; Brownlie PD; Lambert R; Cooper JB; Blundell TL; Wood SP; Malashkevich VN; Hädener A; Warren MJ; Shoolingin-Jordan PM
    Proteins; 1996 May; 25(1):48-78. PubMed ID: 8727319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase.
    Jordan PM; Warren MJ
    FEBS Lett; 1987 Dec; 225(1-2):87-92. PubMed ID: 3079571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of hydroxymethylbilane synthase complexed with a substrate analog: a single substrate-binding site for four consecutive condensation steps.
    Sato H; Sugishima M; Tsukaguchi M; Masuko T; Iijima M; Takano M; Omata Y; Hirabayashi K; Wada K; Hisaeda Y; Yamamoto K
    Biochem J; 2021 Mar; 478(5):1023-1042. PubMed ID: 33600566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Availability of porphobilinogen controls appearance of porphobilinogen deaminase activity in Escherichia coli K-12.
    Umanoff H; Russell CS; Cosloy SD
    J Bacteriol; 1988 Oct; 170(10):4969-71. PubMed ID: 3049558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a cysteine residue as the binding site for the dipyrromethane cofactor at the active site of Escherichia coli porphobilinogen deaminase.
    Jordan PM; Warren MJ; Williams HJ; Stolowich NJ; Roessner CA; Grant SK; Scott AI
    FEBS Lett; 1988 Aug; 235(1-2):189-93. PubMed ID: 3042456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of a novel mechanism for cofactor assembly by Escherichia coli porphobilinogen deaminase.
    Awan SJ; Siligardi G; Warren MJ; Shoolingin-Jordan PM
    Biochem Soc Trans; 1997 Feb; 25(1):79S. PubMed ID: 9056977
    [No Abstract]   [Full Text] [Related]  

  • 11. Residual activity of human porphobilinogen deaminase with R167Q or R167W mutations: an explanation for survival of homozygous and compound heterozygous acute intermittent porphyrics.
    Edixhoven-Bosdijk A; de Rooij FW; de Baar-Heesakkers E; Wilson JH
    Cell Mol Biol (Noisy-le-grand); 2002 Dec; 48(8):861-6. PubMed ID: 12699244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation into the nature of substrate binding to the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase.
    Warren MJ; Jordan PM
    Biochemistry; 1988 Dec; 27(25):9020-30. PubMed ID: 3069132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutagenesis of arginine residues in the catalytic cleft of Escherichia coli porphobilinogen deaminase that affects dipyrromethane cofactor assembly and tetrapyrrole chain initiation and elongation.
    Jordan PM; Woodcock SC
    Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):445-9. PubMed ID: 1747120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast porphobilinogen deaminase also forms enzyme-pyrrole intermediates.
    Correa Garcia S; Rossetti MV; Bermudez Moretti M; Batlle AM
    Enzyme Protein; 1994-1995; 48(5-6):275-81. PubMed ID: 8792872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biosynthesis of uroporphyrinogen III: mechanism of action of porphobilinogen deaminase.
    Jordan PM
    Ciba Found Symp; 1994; 180():70-89; discussion 89-96. PubMed ID: 7842863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human porphobilinogen deaminase mutations in the investigation of the mechanism of dipyrromethane cofactor assembly and tetrapyrrole formation.
    Shoolingin-Jordan PM; Al-Dbass A; McNeill LA; Sarwar M; Butler D
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):731-5. PubMed ID: 12773194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification, crystallization and properties of porphobilinogen deaminase from a recombinant strain of Escherichia coli K12.
    Jordan PM; Thomas SD; Warren MJ
    Biochem J; 1988 Sep; 254(2):427-35. PubMed ID: 3052434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the mechanism of pyrrole polymerization catalysed by porphobilinogen deaminase: high-resolution X-ray studies of the Arabidopsis thaliana enzyme.
    Roberts A; Gill R; Hussey RJ; Mikolajek H; Erskine PT; Cooper JB; Wood SP; Chrystal EJ; Shoolingin-Jordan PM
    Acta Crystallogr D Biol Crystallogr; 2013 Mar; 69(Pt 3):471-85. PubMed ID: 23519422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S-adenosyl-L-methionine is required for DNA cleavage by type III restriction enzymes.
    Bist P; Sistla S; Krishnamurthy V; Acharya A; Chandrakala B; Rao DN
    J Mol Biol; 2001 Jun; 310(1):93-109. PubMed ID: 11419939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cofactor-directed reversible denaturation pathways: the cofactor-stabilized Escherichia coli aspartate aminotransferase homodimer unfolds through a pathway that differs from that of the apoenzyme.
    Deu E; Kirsch JF
    Biochemistry; 2007 May; 46(19):5819-29. PubMed ID: 17441730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.