These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 9230894)
1. Comparative analysis in three fungi reveals structurally and functionally conserved regions in the Mig1 repressor. Cassart JP; Ostling J; Ronne H; Vandenhaute J Mol Gen Genet; 1997 Jun; 255(1):9-18. PubMed ID: 9230894 [TBL] [Abstract][Full Text] [Related]
2. Four hydrophobic amino acid residues in the C-terminal effector domain of the yeast Mig1p repressor are important for its in vivo activity. Ostling J; Cassart JP; Vandenhaute J; Ronne H Mol Gen Genet; 1998 Nov; 260(2-3):269-79. PubMed ID: 9862481 [TBL] [Abstract][Full Text] [Related]
3. The MIG1 repressor from Kluyveromyces lactis: cloning, sequencing and functional analysis in Saccharomyces cerevisiae. Cassart JP; Georis I; Ostling J; Ronne H; Vandenhaute J FEBS Lett; 1995 Sep; 371(2):191-4. PubMed ID: 7672126 [TBL] [Abstract][Full Text] [Related]
4. Glucose repression of the Kluyveromyces lactis invertase gene KlINV1 does not require Mig1p. Georis I; Cassart JP; Breunig KD; Vandenhaute J Mol Gen Genet; 1999 Jun; 261(4-5):862-70. PubMed ID: 10394924 [TBL] [Abstract][Full Text] [Related]
5. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. DeVit MJ; Johnston M Curr Biol; 1999 Nov; 9(21):1231-41. PubMed ID: 10556086 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of Mig1 and Rag5 as expressional regulators in thermotolerant yeast Kluyveromyces marxianus. Nurcholis M; Nitiyon S; Suprayogi ; Rodrussamee N; Lertwattanasakul N; Limtong S; Kosaka T; Yamada M Appl Microbiol Biotechnol; 2019 Jan; 103(1):395-410. PubMed ID: 30397769 [TBL] [Abstract][Full Text] [Related]
7. Yeast SKO1 gene encodes a bZIP protein that binds to the CRE motif and acts as a repressor of transcription. Nehlin JO; Carlberg M; Ronne H Nucleic Acids Res; 1992 Oct; 20(20):5271-8. PubMed ID: 1437546 [TBL] [Abstract][Full Text] [Related]
8. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site. Wu J; Trumbly RJ Yeast; 1998 Aug; 14(11):985-1000. PubMed ID: 9730278 [TBL] [Abstract][Full Text] [Related]
9. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Lutfiyya LL; Iyer VR; DeRisi J; DeVit MJ; Brown PO; Johnston M Genetics; 1998 Dec; 150(4):1377-91. PubMed ID: 9832517 [TBL] [Abstract][Full Text] [Related]
10. Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon. Zenke FT; Zachariae W; Lunkes A; Breunig KD Mol Cell Biol; 1993 Dec; 13(12):7566-76. PubMed ID: 8246973 [TBL] [Abstract][Full Text] [Related]
11. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae. Vallier LG; Carlson M Genetics; 1994 May; 137(1):49-54. PubMed ID: 8056322 [TBL] [Abstract][Full Text] [Related]
12. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae. Zaragoza O; Vincent O; Gancedo JM Biochem J; 2001 Oct; 359(Pt 1):193-201. PubMed ID: 11563983 [TBL] [Abstract][Full Text] [Related]
13. Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose. Ostling J; Ronne H Eur J Biochem; 1998 Feb; 252(1):162-8. PubMed ID: 9523726 [TBL] [Abstract][Full Text] [Related]
14. Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Lutfiyya LL; Johnston M Mol Cell Biol; 1996 Sep; 16(9):4790-7. PubMed ID: 8756637 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional repression by Kluyveromyces lactis Tup1 in Saccharomyces cerevisiae. Lamas-Maceiras M; Freire-Picos MA; Torres AM J Ind Microbiol Biotechnol; 2011 Jan; 38(1):79-84. PubMed ID: 20820861 [TBL] [Abstract][Full Text] [Related]
16. Isolation and sequence of the MIG1 homologue from the yeast Candida utilis. Delfin J; Perdomo W; GarcĂa B; Menendez J Yeast; 2001 May; 18(7):597-603. PubMed ID: 11329170 [TBL] [Abstract][Full Text] [Related]
17. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Treitel MA; Carlson M Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3132-6. PubMed ID: 7724528 [TBL] [Abstract][Full Text] [Related]
18. Glucose represses the lactose-galactose regulon in Kluyveromyces lactis through a SNF1 and MIG1- dependent pathway that modulates galactokinase (GAL1) gene expression. Dong J; Dickson RC Nucleic Acids Res; 1997 Sep; 25(18):3657-64. PubMed ID: 9278487 [TBL] [Abstract][Full Text] [Related]
19. Functional domains in the Mig1 repressor. Ostling J; Carlberg M; Ronne H Mol Cell Biol; 1996 Mar; 16(3):753-61. PubMed ID: 8622676 [TBL] [Abstract][Full Text] [Related]
20. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. Papamichos-Chronakis M; Gligoris T; Tzamarias D EMBO Rep; 2004 Apr; 5(4):368-72. PubMed ID: 15031717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]