These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 9230894)
21. MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae. Hu Z; Nehlin JO; Ronne H; Michels CA Curr Genet; 1995 Aug; 28(3):258-66. PubMed ID: 8529272 [TBL] [Abstract][Full Text] [Related]
22. Structure of the ABF1-homologue from Kluyveromyces marxianus. Oberyé EH; Maurer K; Mager WH; Planta RJ Biochim Biophys Acta; 1993 May; 1173(2):233-6. PubMed ID: 7916634 [TBL] [Abstract][Full Text] [Related]
23. Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Tzamarias D; Struhl K Nature; 1994 Jun; 369(6483):758-61. PubMed ID: 8008070 [TBL] [Abstract][Full Text] [Related]
24. MIG1 as a positive regulator for the histidine biosynthesis pathway and as a global regulator in thermotolerant yeast Kluyveromyces marxianus. Nurcholis M; Murata M; Limtong S; Kosaka T; Yamada M Sci Rep; 2019 Jul; 9(1):9926. PubMed ID: 31289320 [TBL] [Abstract][Full Text] [Related]
25. The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1. Smith FC; Davies SP; Wilson WA; Carling D; Hardie DG FEBS Lett; 1999 Jun; 453(1-2):219-23. PubMed ID: 10403407 [TBL] [Abstract][Full Text] [Related]
26. In vitro characterization of the Mig1 repressor from Saccharomyces cerevisiae reveals evidence for monomeric and higher molecular weight forms. Needham PG; Trumbly RJ Yeast; 2006 Dec; 23(16):1151-66. PubMed ID: 17133623 [TBL] [Abstract][Full Text] [Related]
27. Regulation of glycolysis by casein kinase I (Rag8p) in Kluyveromyces lactis involves a DNA-binding protein, Sck1p, a homologue of Sgc1p of Saccharomyces cerevisiae. Lemaire M; Guyon A; Betina S; Wésolowski-Louvel M Curr Genet; 2002 Mar; 40(6):355-64. PubMed ID: 11919674 [TBL] [Abstract][Full Text] [Related]
28. Expression of an alpha-galactosidase gene under control of the homologous inulinase promoter in Kluyveromyces marxianus. Bergkamp RJ; Bootsman TC; Toschka HY; Mooren AT; Kox L; Verbakel JM; Geerse RH; Planta RJ Appl Microbiol Biotechnol; 1993 Nov; 40(2-3):309-17. PubMed ID: 7764385 [TBL] [Abstract][Full Text] [Related]
29. Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity. Chen Y; Barlev NA; Westergaard O; Jakobsen BK EMBO J; 1993 Dec; 12(13):5007-18. PubMed ID: 8262043 [TBL] [Abstract][Full Text] [Related]
30. NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae. Zhou H; Winston F BMC Genet; 2001; 2():5. PubMed ID: 11281938 [TBL] [Abstract][Full Text] [Related]
31. Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Park SH; Koh SS; Chun JH; Hwang HJ; Kang HS Mol Cell Biol; 1999 Mar; 19(3):2044-50. PubMed ID: 10022891 [TBL] [Abstract][Full Text] [Related]
32. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Tzamarias D; Struhl K Genes Dev; 1995 Apr; 9(7):821-31. PubMed ID: 7705659 [TBL] [Abstract][Full Text] [Related]
33. Overexpression of Arabidopsis thaliana SKP1 homologues in yeast inactivates the Mig1 repressor by destabilising the F-box protein Grr1. Schouten J; de Kam RJ; Fetter K; Hoge JH Mol Gen Genet; 2000 Mar; 263(2):309-19. PubMed ID: 10778750 [TBL] [Abstract][Full Text] [Related]
34. Genome-wide analysis of the functions of a conserved surface on the corepressor Tup1. Green SR; Johnson AD Mol Biol Cell; 2005 Jun; 16(6):2605-13. PubMed ID: 15788561 [TBL] [Abstract][Full Text] [Related]
35. Conserved initiator proteins in eukaryotes. Gavin KA; Hidaka M; Stillman B Science; 1995 Dec; 270(5242):1667-71. PubMed ID: 7502077 [TBL] [Abstract][Full Text] [Related]
36. Differences in regulation of yeast gluconeogenesis revealed by Cat8p-independent activation of PCK1 and FBP1 genes in Kluyveromyces lactis. Georis I; Krijger JJ; Breunig KD; Vandenhaute J Mol Gen Genet; 2000 Sep; 264(1-2):193-203. PubMed ID: 11016849 [TBL] [Abstract][Full Text] [Related]
37. Characterization of inulinase promoter from Kluyveromyces marxianus for intensive protein expression in industrial biotechnology. Gao J; Yuan W; Li Y; Bai F; Jiang Y FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28922844 [TBL] [Abstract][Full Text] [Related]
38. The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent. Ahuatzi D; Herrero P; de la Cera T; Moreno F J Biol Chem; 2004 Apr; 279(14):14440-6. PubMed ID: 14715653 [TBL] [Abstract][Full Text] [Related]
39. Structure and expression of the ABF1-regulated ribosomal protein S33 gene in Kluyveromyces. Hoekstra R; Ferreira PM; Bootsman TC; Mager WH; Planta RJ Yeast; 1992 Nov; 8(11):949-59. PubMed ID: 1481571 [TBL] [Abstract][Full Text] [Related]
40. SIT4 regulation of Mig1p-mediated catabolite repression in Saccharomyces cerevisiae. Jin C; Barrientos A; Epstein CB; Butow RA; Tzagoloff A FEBS Lett; 2007 Dec; 581(29):5658-63. PubMed ID: 18022394 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]