These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 9230897)
1. A meiotically reproducible chromosome length polymorphism in the ascomycete fungus Ophiostoma ulmi (sensu lato). Dewar K; Bousquet J; Dufour J; Bernier L Mol Gen Genet; 1997 Jun; 255(1):38-44. PubMed ID: 9230897 [TBL] [Abstract][Full Text] [Related]
2. Inheritance of chromosome-length polymorphisms in Ophiostoma ulmi (sensu lato). Dewar K; Bernier L Curr Genet; 1995 May; 27(6):541-9. PubMed ID: 7553939 [TBL] [Abstract][Full Text] [Related]
3. Electrophoretic karyotypes of the elm tree pathogen Ophiostoma ulmi (sensu lato). Dewar K; Bernier L Mol Gen Genet; 1993 Apr; 238(1-2):43-8. PubMed ID: 8479439 [TBL] [Abstract][Full Text] [Related]
4. Origins and inheritance of chromosome-length polymorphisms in the barley covered smut fungus, Ustilago hordei. Gaudet DA; Gusse J; Laroche A Curr Genet; 1998 Mar; 33(3):216-24. PubMed ID: 9508796 [TBL] [Abstract][Full Text] [Related]
5. Karyotype polymorphism and chromosomal rearrangement in populations of the phytopathogenic fungus, Ascochyta rabiei. Akamatsu HO; Chilvers MI; Kaiser WJ; Peever TL Fungal Biol; 2012 Nov; 116(11):1119-33. PubMed ID: 23153803 [TBL] [Abstract][Full Text] [Related]
6. Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola. Wittenberg AH; van der Lee TA; Ben M'barek S; Ware SB; Goodwin SB; Kilian A; Visser RG; Kema GH; Schouten HJ PLoS One; 2009 Jun; 4(6):e5863. PubMed ID: 19516898 [TBL] [Abstract][Full Text] [Related]
7. Genomic organization of the yeast Yarrowia lipolytica. Casarégola S; Feynerol C; Diez M; Fournier P; Gaillardin C Chromosoma; 1997 Nov; 106(6):380-90. PubMed ID: 9362546 [TBL] [Abstract][Full Text] [Related]
8. A family of laboratory strains of Saccharomyces cerevisiae carry rearrangements involving chromosomes I and III. Casaregola S; Nguyen HV; Lepingle A; Brignon P; Gendre F; Gaillardin C Yeast; 1998 Apr; 14(6):551-64. PubMed ID: 9605505 [TBL] [Abstract][Full Text] [Related]
9. Major chromosomal length polymorphisms are evident after meiosis in the phytopathogenic fungus Leptosphaeria maculans. Plummer KM; Howlett BJ Curr Genet; 1993; 24(1-2):107-13. PubMed ID: 8358816 [TBL] [Abstract][Full Text] [Related]
10. Cytological karyotyping and characterization of a 410 kb minichromosome in Nectria haematococca MPI. Mahmoud AM; Taga M Mycologia; 2012; 104(4):845-56. PubMed ID: 22453120 [TBL] [Abstract][Full Text] [Related]
11. Meiotic behaviour of the minichromosome in the phytopathogenic ascomycete Leptosphaeria maculans. Leclair S; Ansan-Melayah D; Rouxel T; Balesdent M Curr Genet; 1996 Dec; 30(6):541-8. PubMed ID: 8939816 [TBL] [Abstract][Full Text] [Related]
12. A restriction fragment length polymorphism map and electrophoretic karyotype of the fungal maize pathogen Cochliobolus heterostrophus. Tzeng TH; Lyngholm LK; Ford CF; Bronson CR Genetics; 1992 Jan; 130(1):81-96. PubMed ID: 1346261 [TBL] [Abstract][Full Text] [Related]
13. Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus. Habig M; Kema GH; Holtgrewe Stukenbrock E Elife; 2018 Dec; 7():. PubMed ID: 30543518 [TBL] [Abstract][Full Text] [Related]
14. Electrophoretic and cytological karyotyping of the foliar wheat pathogen Mycosphaerella graminicola reveals many chromosomes with a large size range. Mehrabi R; Taga M; Kema GH Mycologia; 2007; 99(6):868-76. PubMed ID: 18333510 [TBL] [Abstract][Full Text] [Related]
15. Electrophoretic karyotypes of Tilletia caries, T. controversa, and their F1 progeny: further evidence for conspecific status. Russell BW; Mills D Mol Plant Microbe Interact; 1993; 6(1):66-74. PubMed ID: 8439671 [TBL] [Abstract][Full Text] [Related]
16. Visualization of a conditionally dispensable chromosome in the filamentous ascomycete Nectria haematococca by fluorescence in situ hybridization. Taga M; Murata M; VanEtten HD Fungal Genet Biol; 1999 Apr; 26(3):169-77. PubMed ID: 10361031 [TBL] [Abstract][Full Text] [Related]
18. Functional annotation of the Ophiostoma novo-ulmi genome: insights into the phytopathogenicity of the fungal agent of Dutch elm disease. Comeau AM; Dufour J; Bouvet GF; Jacobi V; Nigg M; Henrissat B; Laroche J; Levesque RC; Bernier L Genome Biol Evol; 2014 Dec; 7(2):410-30. PubMed ID: 25539722 [TBL] [Abstract][Full Text] [Related]
19. Molecular karyotype of the phytopathogenic fungus Sclerotinia sclerotiorum. Fraissinet-Tachet L; Reymond-Cotton P; Fèvre M Curr Genet; 1996 Apr; 29(5):496-501. PubMed ID: 8625431 [TBL] [Abstract][Full Text] [Related]
20. Real time RT-PCR quantification and Northern analysis of cerato-ulmin ( CU) gene transcription in different strains of the phytopathogens Ophiostoma ulmi and O. novo-ulmi. Tadesse Y; Bernier L; Hintz WE; Horgen PA Mol Genet Genomics; 2003 Sep; 269(6):789-96. PubMed ID: 14513363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]