BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 9230897)

  • 1. A meiotically reproducible chromosome length polymorphism in the ascomycete fungus Ophiostoma ulmi (sensu lato).
    Dewar K; Bousquet J; Dufour J; Bernier L
    Mol Gen Genet; 1997 Jun; 255(1):38-44. PubMed ID: 9230897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inheritance of chromosome-length polymorphisms in Ophiostoma ulmi (sensu lato).
    Dewar K; Bernier L
    Curr Genet; 1995 May; 27(6):541-9. PubMed ID: 7553939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophoretic karyotypes of the elm tree pathogen Ophiostoma ulmi (sensu lato).
    Dewar K; Bernier L
    Mol Gen Genet; 1993 Apr; 238(1-2):43-8. PubMed ID: 8479439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins and inheritance of chromosome-length polymorphisms in the barley covered smut fungus, Ustilago hordei.
    Gaudet DA; Gusse J; Laroche A
    Curr Genet; 1998 Mar; 33(3):216-24. PubMed ID: 9508796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Karyotype polymorphism and chromosomal rearrangement in populations of the phytopathogenic fungus, Ascochyta rabiei.
    Akamatsu HO; Chilvers MI; Kaiser WJ; Peever TL
    Fungal Biol; 2012 Nov; 116(11):1119-33. PubMed ID: 23153803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola.
    Wittenberg AH; van der Lee TA; Ben M'barek S; Ware SB; Goodwin SB; Kilian A; Visser RG; Kema GH; Schouten HJ
    PLoS One; 2009 Jun; 4(6):e5863. PubMed ID: 19516898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic organization of the yeast Yarrowia lipolytica.
    Casarégola S; Feynerol C; Diez M; Fournier P; Gaillardin C
    Chromosoma; 1997 Nov; 106(6):380-90. PubMed ID: 9362546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A family of laboratory strains of Saccharomyces cerevisiae carry rearrangements involving chromosomes I and III.
    Casaregola S; Nguyen HV; Lepingle A; Brignon P; Gendre F; Gaillardin C
    Yeast; 1998 Apr; 14(6):551-64. PubMed ID: 9605505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Major chromosomal length polymorphisms are evident after meiosis in the phytopathogenic fungus Leptosphaeria maculans.
    Plummer KM; Howlett BJ
    Curr Genet; 1993; 24(1-2):107-13. PubMed ID: 8358816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytological karyotyping and characterization of a 410 kb minichromosome in Nectria haematococca MPI.
    Mahmoud AM; Taga M
    Mycologia; 2012; 104(4):845-56. PubMed ID: 22453120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meiotic behaviour of the minichromosome in the phytopathogenic ascomycete Leptosphaeria maculans.
    Leclair S; Ansan-Melayah D; Rouxel T; Balesdent M
    Curr Genet; 1996 Dec; 30(6):541-8. PubMed ID: 8939816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A restriction fragment length polymorphism map and electrophoretic karyotype of the fungal maize pathogen Cochliobolus heterostrophus.
    Tzeng TH; Lyngholm LK; Ford CF; Bronson CR
    Genetics; 1992 Jan; 130(1):81-96. PubMed ID: 1346261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus.
    Habig M; Kema GH; Holtgrewe Stukenbrock E
    Elife; 2018 Dec; 7():. PubMed ID: 30543518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic and cytological karyotyping of the foliar wheat pathogen Mycosphaerella graminicola reveals many chromosomes with a large size range.
    Mehrabi R; Taga M; Kema GH
    Mycologia; 2007; 99(6):868-76. PubMed ID: 18333510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic karyotypes of Tilletia caries, T. controversa, and their F1 progeny: further evidence for conspecific status.
    Russell BW; Mills D
    Mol Plant Microbe Interact; 1993; 6(1):66-74. PubMed ID: 8439671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization of a conditionally dispensable chromosome in the filamentous ascomycete Nectria haematococca by fluorescence in situ hybridization.
    Taga M; Murata M; VanEtten HD
    Fungal Genet Biol; 1999 Apr; 26(3):169-77. PubMed ID: 10361031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geosmithia-Ophiostoma: a New Fungus-Fungus Association.
    Pepori AL; Bettini PP; Comparini C; Sarrocco S; Bonini A; Frascella A; Ghelardini L; Scala A; Vannacci G; Santini A
    Microb Ecol; 2018 Apr; 75(3):632-646. PubMed ID: 28875260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional annotation of the Ophiostoma novo-ulmi genome: insights into the phytopathogenicity of the fungal agent of Dutch elm disease.
    Comeau AM; Dufour J; Bouvet GF; Jacobi V; Nigg M; Henrissat B; Laroche J; Levesque RC; Bernier L
    Genome Biol Evol; 2014 Dec; 7(2):410-30. PubMed ID: 25539722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular karyotype of the phytopathogenic fungus Sclerotinia sclerotiorum.
    Fraissinet-Tachet L; Reymond-Cotton P; Fèvre M
    Curr Genet; 1996 Apr; 29(5):496-501. PubMed ID: 8625431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real time RT-PCR quantification and Northern analysis of cerato-ulmin ( CU) gene transcription in different strains of the phytopathogens Ophiostoma ulmi and O. novo-ulmi.
    Tadesse Y; Bernier L; Hintz WE; Horgen PA
    Mol Genet Genomics; 2003 Sep; 269(6):789-96. PubMed ID: 14513363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.