These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 9231340)
1. The role of mammalian intestinal bacteria in the reductive metabolism of zonisamide. Kitamura S; Sugihara K; Kuwasako M; Tatsumi K J Pharm Pharmacol; 1997 Mar; 49(3):253-6. PubMed ID: 9231340 [TBL] [Abstract][Full Text] [Related]
2. Involvement of mammalian liver cytosols and aldehyde oxidase in reductive metabolism of zonisamide. Sugihara K; Kitamura S; Tatsumi K Drug Metab Dispos; 1996 Feb; 24(2):199-202. PubMed ID: 8742231 [TBL] [Abstract][Full Text] [Related]
3. Reductive metabolism of the anticonvulsant agent zonisamide, a 1,2-benzisoxazole derivative. Stiff DD; Robicheau JT; Zemaitis MA Xenobiotica; 1992 Jan; 22(1):1-11. PubMed ID: 1615700 [TBL] [Abstract][Full Text] [Related]
4. Extremely high drug-reductase activity based on aldehyde oxidase in monkey liver. Kitamura S; Ohashi KNK ; Sugihara K; Hosokawa R; Akagawa Y; Ohta S Biol Pharm Bull; 2001 Jul; 24(7):856-9. PubMed ID: 11456132 [TBL] [Abstract][Full Text] [Related]
5. Rat liver microsomal cytochrome P-450 responsible for reductive metabolism of zonisamide. Nakasa H; Komiya M; Ohmori S; Rikihisa T; Kitada M Drug Metab Dispos; 1993; 21(5):777-81. PubMed ID: 7902235 [TBL] [Abstract][Full Text] [Related]
6. Formation of 2-sulphamoylacetylphenol from zonisamide under aerobic conditions in rat liver microsomes. Nakasa H; Ohmori S; Kitada M Xenobiotica; 1996 May; 26(5):495-501. PubMed ID: 8736061 [TBL] [Abstract][Full Text] [Related]
7. Formation of reductive metabolite, 2-sulfamoylacetylphenol, from zonisamide in rat liver microsomes. Nakasa H; Komiya M; Ohmori S; Kitada M; Rikihisa T; Kanakubo Y Res Commun Chem Pathol Pharmacol; 1992 Jul; 77(1):31-41. PubMed ID: 1439179 [TBL] [Abstract][Full Text] [Related]
8. Metabolism of the anticonvulsant agent zonisamide in the rat. Stiff DD; Zemaitis MA Drug Metab Dispos; 1990; 18(6):888-94. PubMed ID: 1981533 [TBL] [Abstract][Full Text] [Related]
9. Reductive debromination of (alpha-bromoiso-valeryl)urea by intestinal bacteria. Kitamura S; Kuwasako M; Ohta S; Tatsumi K J Pharm Pharmacol; 1999 Jan; 51(1):79-84. PubMed ID: 10197422 [TBL] [Abstract][Full Text] [Related]
10. Reduction of stilbene oxide and styrene oxide to the corresponding alkenes by intestinal bacteria. Kitamura S; Mita M; Matsuda K; Ohta S; Tatsumi K Xenobiotica; 2000 Apr; 30(4):359-69. PubMed ID: 10821165 [TBL] [Abstract][Full Text] [Related]
11. Characterization of human liver microsomal cytochrome P450 involved in the reductive metabolism of zonisamide. Nakasa H; Komiya M; Ohmori S; Rikihisa T; Kiuchi M; Kitada M Mol Pharmacol; 1993 Jul; 44(1):216-21. PubMed ID: 8341274 [TBL] [Abstract][Full Text] [Related]
12. Participation of liver aldehyde oxidase in reductive metabolism of hydroxamic acids to amides. Sugihara K; Tatsumi K Arch Biochem Biophys; 1986 Jun; 247(2):289-93. PubMed ID: 3717945 [TBL] [Abstract][Full Text] [Related]
13. Reductive isoxazole ring opening of the anticoagulant razaxaban is the major metabolic clearance pathway in rats and dogs. Zhang D; Raghavan N; Chen SY; Zhang H; Quan M; Lecureux L; Patrone LM; Lam PY; Bonacorsi SJ; Knabb RM; Skiles GL; He K Drug Metab Dispos; 2008 Feb; 36(2):303-15. PubMed ID: 17984286 [TBL] [Abstract][Full Text] [Related]
14. Degradation of quercetin-3-glucoside in gnotobiotic rats associated with human intestinal bacteria. Schneider H; Simmering R; Hartmann L; Pforte H; Blaut M J Appl Microbiol; 2000 Dec; 89(6):1027-37. PubMed ID: 11123476 [TBL] [Abstract][Full Text] [Related]
15. Involvement of liver aldehyde oxidase in the reduction of nicotinamide N-oxide. Kitamura S; Tatsumi K Biochem Biophys Res Commun; 1984 Apr; 120(2):602-6. PubMed ID: 6233971 [TBL] [Abstract][Full Text] [Related]
16. Involvement of molybdenum hydroxylases in reductive metabolism of nitro polycyclic aromatic hydrocarbons in mammalian skin. Ueda O; Sugihara K; Ohta S; Kitamura S Drug Metab Dispos; 2005 Sep; 33(9):1312-8. PubMed ID: 15932950 [TBL] [Abstract][Full Text] [Related]
17. Epoxide reductase activity of mammalian liver cytosols and aldehyde oxidase. Hirao Y; Kitamura S; Tatsumi K Carcinogenesis; 1994 Apr; 15(4):739-43. PubMed ID: 8149489 [TBL] [Abstract][Full Text] [Related]
18. Antibiotic treatment with ampicillin accelerates the healing of colonic damage impaired by aspirin and coxib in the experimental colitis. Importance of intestinal bacteria, colonic microcirculation and proinflammatory cytokines. Zwolinska-Wcislo M; Krzysiek-Maczka G; Ptak-Belowska A; Karczewska E; Pajdo R; Sliwowski Z; Urbanczyk K; Drozdowicz D; Konturek SJ; Pawlik WW; Brzozowski T J Physiol Pharmacol; 2011 Jun; 62(3):357-68. PubMed ID: 21893697 [TBL] [Abstract][Full Text] [Related]
19. Further studies on reductive metabolism of acetohexamide in heart. Imamura Y; Higuchi T; Kojima Y; Otagiri M Chem Pharm Bull (Tokyo); 1989 Jul; 37(7):1941-3. PubMed ID: 2805175 [TBL] [Abstract][Full Text] [Related]
20. Effects of antibiotic pretreatments on the metabolism and excretion of [U14C](+)-catechin [( U14C](+)-cyanidanol-3) and its metabolite, 3'-0-methyl-(+)-catechin. Gott DM; Griffiths LA Xenobiotica; 1987 Apr; 17(4):423-34. PubMed ID: 3604252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]