BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9231352)

  • 1. Age-related changes in [3H]nimodipine and [3H]rolipram binding in the rat brain.
    Araki T; Kato H; Shuto K; Itoyama Y
    J Pharm Pharmacol; 1997 Mar; 49(3):310-4. PubMed ID: 9231352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-dependent changes in second messenger and rolipram receptor systems in the gerbil brain.
    Araki T; Kato H; Kanai Y; Kogure K
    J Neural Transm Gen Sect; 1994; 97(2):135-47. PubMed ID: 7873123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nitric oxide synthase inhibitor on age-related changes in second messenger systems and calcium channels in rats.
    Araki T; Kato H; Shuto K; Fujiwara T; Itoyama Y
    Metab Brain Dis; 1997 Mar; 12(1):83-92. PubMed ID: 9101540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping of second messenger and rolipram receptors in mammalian brain.
    Araki T; Kato H; Kogure K
    Brain Res Bull; 1992 Jun; 28(6):843-8. PubMed ID: 1322228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential alterations of [3H]rolipram and [3H]cyclic adenosine monophosphate binding in the gerbil brain following transient cerebral ischemia.
    Murase K; Kato H; Araki T; Kogure K
    Brain Res; 1993 Feb; 602(2):234-9. PubMed ID: 8383573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of rolipram on age-related changes in cyclic AMP-selective phosphodiesterase in the rat brain: an autoradiographic study.
    Kato H; Araki T; Chen T; Itoyama Y; Kogure K
    Methods Find Exp Clin Pharmacol; 1998 Jun; 20(5):403-8. PubMed ID: 9701778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in [3H]MK-801, [3H]muscimol, [3H]cyclic AMP, and [3H]rolipram binding in the gerbil hippocampus following repeated ischemic insults.
    Kato H; Araki T; Murase K; Kogure K
    Neuroscience; 1993 Jan; 52(2):245-53. PubMed ID: 8383818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of aging on rolipram-sensitive phosphodiesterase activity and [3H]rolipram binding in the rat brain.
    Tohda M; Murayama T; Nogiri S; Nomura Y
    Biol Pharm Bull; 1996 Feb; 19(2):300-2. PubMed ID: 8850327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pentobarbital on postischemic SCH 23390 and rolipram binding in gerbil brain.
    Kanai Y; Araki T; Murakami F; Kato H; Kogure K
    Eur J Pharmacol; 1993 Aug; 248(2):191-8. PubMed ID: 8223965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biarylcarboxylic acids and -amides: inhibition of phosphodiesterase type IV versus [3H]rolipram binding activity and their relationship to emetic behavior in the ferret.
    Duplantier AJ; Biggers MS; Chambers RJ; Cheng JB; Cooper K; Damon DB; Eggler JF; Kraus KG; Marfat A; Masamune H; Pillar JS; Shirley JT; Umland JP; Watson JW
    J Med Chem; 1996 Jan; 39(1):120-5. PubMed ID: 8568798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitors of phosphodiesterase IV (PDE IV) increase acid secretion in rabbit isolated gastric glands: correlation between function and interaction with a high-affinity rolipram binding site.
    Barnette MS; Grous M; Cieslinski LB; Burman M; Christensen SB; Torphy TJ
    J Pharmacol Exp Ther; 1995 Jun; 273(3):1396-402. PubMed ID: 7791113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related effects of rolipram on [3H]quinuclidinyl benzilate and [3H]phorbol 12,13-dibutyrate binding in the rat brain.
    Chen T; Kato H; Araki T; Itoyama Y; Kogure K
    Tohoku J Exp Med; 1998 Jun; 185(2):107-18. PubMed ID: 9747650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autoradiographic mapping of a selective cyclic adenosine monophosphate phosphodiesterase in rat brain with the antidepressant [3H]rolipram.
    Kaulen P; BrĂ¼ning G; Schneider HH; Sarter M; Baumgarten HG
    Brain Res; 1989 Dec; 503(2):229-45. PubMed ID: 2557965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereospecificity of rolipram actions on eosinophil cyclic AMP-specific phosphodiesterase.
    Souness JE; Scott LC
    Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):389-95. PubMed ID: 8387267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CDP840: a novel inhibitor of PDE-4.
    Perry MJ; O'Connell J; Walker C; Crabbe T; Baldock D; Russell A; Lumb S; Huang Z; Howat D; Allen R; Merriman M; Walls J; Daniel T; Hughes B; Laliberte F; Higgs GA; Owens RJ
    Cell Biochem Biophys; 1998; 29(1-2):113-32. PubMed ID: 9631241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple actions of glaucine on cyclic nucleotide phosphodiesterases, alpha 1-adrenoceptor and benzothiazepine binding site at the calcium channel.
    Ivorra MD; Lugnier C; Schott C; Catret M; Noguera MA; Anselmi E; D'Ocon P
    Br J Pharmacol; 1992 Jun; 106(2):387-94. PubMed ID: 1327380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of eosinophil function by RP 73401, a potent and selective inhibitor of cyclic AMP-specific phosphodiesterase: comparison with rolipram.
    Souness JE; Maslen C; Webber S; Foster M; Raeburn D; Palfreyman MN; Ashton MJ; Karlsson JA
    Br J Pharmacol; 1995 May; 115(1):39-46. PubMed ID: 7647982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential alteration of [3H]rolipram binding in gerbil brain after transient cerebral ischemia.
    Araki T; Kanai Y; Kato H; Kogure K
    Brain Res Bull; 1993; 31(1-2):85-9. PubMed ID: 8453496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-affinity cAMP phosphodiesterase and adenosine localized in sensory organs.
    Borisy FF; Hwang PN; Ronnett GV; Snyder SH
    Brain Res; 1993 May; 610(2):199-207. PubMed ID: 8391370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of phosphodiesterase isoenzymes in regulating intracellular cyclic AMP in adenosine-stimulated smooth muscle cells.
    Xiong Y; Westhead EW; Slakey LL
    Biochem J; 1995 Jan; 305 ( Pt 2)(Pt 2):627-33. PubMed ID: 7832782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.