BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9231388)

  • 41. Regulation of pyruvate kinase in skeletal muscle of the freeze tolerant wood frog, Rana sylvatica.
    Smolinski MB; Mattice JJL; Storey KB
    Cryobiology; 2017 Aug; 77():25-33. PubMed ID: 28600082
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphoglycerate kinase 1 expression responds to freezing, anoxia, and dehydration stresses in the freeze tolerant wood frog, Rana sylvatica.
    Wu S; Storey JM; Storey KB
    J Exp Zool A Ecol Genet Physiol; 2009 Jan; 311(1):57-67. PubMed ID: 18785212
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Liver freezing response of the freeze-tolerant wood frog, Rana sylvatica, in the presence and absence of glucose. I. Experimental measures.
    Devireddy RV; Barratt PR; Storey KB; Bischof JC
    Cryobiology; 1999 Jun; 38(4):310-26. PubMed ID: 10413574
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Freeze tolerance and intolerance as strategies of winter survival in terrestrially-hibernating amphibians.
    Storey KB; Storey JM
    Comp Biochem Physiol A Comp Physiol; 1986; 83(4):613-7. PubMed ID: 2870854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of cooling rate on the survival of frozen wood frogs, Rana sylvatica.
    Costanzo JP; Lee RE; Wright MF
    J Comp Physiol B; 1991; 161(3):225-9. PubMed ID: 1939737
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Survival and metabolism of Rana arvalis during freezing.
    Voituron Y; Paaschburg L; Holmstrup M; Barré H; Ramløv H
    J Comp Physiol B; 2009 Feb; 179(2):223-30. PubMed ID: 18815794
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Freezing stress adaptations: Critical elements to activate Nrf2 related antioxidant defense in liver and skeletal muscle of the freeze tolerant wood frogs.
    Zhang J; Gupta A; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 254():110573. PubMed ID: 33548505
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Seasonal variation in the hepatoproteome of the dehydration and freeze-tolerant wood frog, Rana sylvatica.
    Kiss AJ; Muir TJ; Lee RE; Costanzo JP
    Int J Mol Sci; 2011; 12(12):8406-14. PubMed ID: 22272080
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Freeze-induced suppression of pyruvate kinase in liver of the wood frog (Rana sylvatica).
    Varma A; Storey KB
    Adv Biol Regul; 2023 May; 88():100944. PubMed ID: 36542984
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stress-induced antioxidant defense and protein chaperone response in the freeze-tolerant wood frog Rana sylvatica.
    Wu CW; Tessier SN; Storey KB
    Cell Stress Chaperones; 2018 Nov; 23(6):1205-1217. PubMed ID: 29951989
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Freeze duration influences postfreeze survival in the frog Rana sylvatica.
    Layne JR; Costanzo JP; Lee RE
    J Exp Zool; 1998 Feb; 280(2):197-201. PubMed ID: 9433805
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Membrane adaptation in phospholipids and cholesterol in the widely distributed, freeze-tolerant wood frog, Rana sylvatica.
    Reynolds AM; Lee RE; Costanzo JP
    J Comp Physiol B; 2014 Apr; 184(3):371-83. PubMed ID: 24504263
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cooling rate influences cryoprotectant distribution and organ dehydration in freezing wood frogs.
    Costanzo JP; Lee RE; Wright MF
    J Exp Zool; 1992 Apr; 261(4):373-8. PubMed ID: 1569408
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of sarcolemma and sarcoplasmic reticulum isolated from skeletal muscle of the freeze tolerant wood frog, Rana sylvatica: the beta(2)-adrenergic receptor and calcium transport systems in control, frozen and thawed states.
    Hemmings SJ; Storey KB
    Cell Biochem Funct; 2001 Jun; 19(2):143-52. PubMed ID: 11335939
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cold acclimation-induced up-regulation of the ribosomal protein L7 gene in the freeze tolerant wood frog, Rana sylvatica.
    Wu S; De Croos JN; Storey KB
    Gene; 2008 Nov; 424(1-2):48-55. PubMed ID: 18706984
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lessons from nature: Leveraging the freeze-tolerant wood frog as a model to improve organ cryopreservation and biobanking.
    Al-Attar R; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2022; 261():110747. PubMed ID: 35460874
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activation of mitogen-activated protein kinases during natural freezing and thawing in the wood frog.
    Greenway SC; Storey KB
    Mol Cell Biochem; 2000 Jun; 209(1-2):29-37. PubMed ID: 10942198
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A hydrogen peroxide safety valve: The reversible phosphorylation of catalase from the freeze-tolerant North American wood frog, Rana sylvatica.
    Dawson NJ; Storey KB
    Biochim Biophys Acta; 2016 Mar; 1860(3):476-85. PubMed ID: 26691137
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Urea loading enhances freezing survival and postfreeze recovery in a terrestrially hibernating frog.
    Costanzo JP; Lee RE
    J Exp Biol; 2008 Sep; 211(Pt 18):2969-75. PubMed ID: 18775934
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Environmental stress responsive expression of the gene li16 in Rana sylvatica, the freeze tolerant wood frog.
    Sullivan KJ; Storey KB
    Cryobiology; 2012 Jun; 64(3):192-200. PubMed ID: 22301420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.