These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 9231391)
1. Respiratory, blood-gas transport, and acid-base response of Leptograpsus variegatus to long-term immersion and hyposaline exposure. Cooper AR; Morris S Physiol Zool; 1997; 70(2):181-92. PubMed ID: 9231391 [TBL] [Abstract][Full Text] [Related]
2. Respiratory, acid-base, and metabolic responses of the Christmas Island blue crab, Cardisoma hirtipes (Dana), during simulated environmental conditions. Dela-Cruz J; Morris S Physiol Zool; 1997; 70(1):100-15. PubMed ID: 9231382 [TBL] [Abstract][Full Text] [Related]
3. Behavioral influences on the physiological responses of Cancer gracilis, the graceful crab, during hyposaline exposure. Curtis DL; Jensen EK; McGaw IJ Biol Bull; 2007 Jun; 212(3):222-31. PubMed ID: 17565111 [TBL] [Abstract][Full Text] [Related]
4. Feeding and digestion in low salinity in an osmoconforming crab, Cancer gracilis. I. Cardiovascular and respiratory responses. McGaw IJ J Exp Biol; 2006 Oct; 209(Pt 19):3766-76. PubMed ID: 16985193 [TBL] [Abstract][Full Text] [Related]
5. Blood acid-base changes during experimental emersion and reimmersion of the intertidal crab Carcinus maenas (L.). Truchot JP Respir Physiol; 1975 Apr; 23(3):351-60. PubMed ID: 238271 [TBL] [Abstract][Full Text] [Related]
6. Acute and chronic effects of cadmium on blood homeostasis of an estuarine crab, Chasmagnathus granulata, and the modifying effect of salinity. Rodríguez EM; Bigi R; Medesani DA; Stella VS; Greco LS; Moreno PA; Monserrat JM; Pellerano GN; Ansaldo M Braz J Med Biol Res; 2001 Apr; 34(4):509-18. PubMed ID: 11285463 [TBL] [Abstract][Full Text] [Related]
7. Exercise and emersion in air, and recovery in seawater in the green crab (Carcinus maenas): metabolic, acid-base, cardio-ventilatory and ionoregulatory responses. Wood CM; Po BHK J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35603458 [TBL] [Abstract][Full Text] [Related]
8. Effects of Hypoxia and Hypercapnic Hypoxia on Oxygen Transport and Acid-Base Status in the Atlantic Blue Crab, Callinectes sapidus, During Exercise. Lehtonen MP; Burnett LE J Exp Zool A Ecol Genet Physiol; 2016 Nov; 325(9):598-609. PubMed ID: 27901314 [TBL] [Abstract][Full Text] [Related]
9. Respiratory gas transport, metabolic status, and locomotor capacity of the Christmas Island red crab Gecarcoidea natalis assessed in the field with respect to dichotomous seasonal activity levels. Adamczewska AM; Morris S J Exp Zool; 2000 May; 286(6):552-62. PubMed ID: 10766964 [TBL] [Abstract][Full Text] [Related]
10. Acid-base changes on transfer between sea- and freshwater in the Chinese crab, Eriocheir sinensis. Truchot JP Respir Physiol; 1992 Mar; 87(3):419-27. PubMed ID: 1604063 [TBL] [Abstract][Full Text] [Related]
11. Effects of salinity on short-term waterborne zinc uptake, accumulation and sub-lethal toxicity in the green shore crab (Carcinus maenas). Niyogi S; Blewett TA; Gallagher T; Fehsenfeld S; Wood CM Aquat Toxicol; 2016 Sep; 178():132-40. PubMed ID: 27486083 [TBL] [Abstract][Full Text] [Related]
12. [Blood acid-base changes produced by variations of water oxygenation in the crab Carcinus maenas (author's transl)]. Truchot JP J Physiol (Paris); 1975 Dec; 70(5):583-92. PubMed ID: 4615 [TBL] [Abstract][Full Text] [Related]
13. Differential acid-base regulation in various gills of the green crab Carcinus maenas: Effects of elevated environmental pCO2. Fehsenfeld S; Weihrauch D Comp Biochem Physiol A Mol Integr Physiol; 2013 Jan; 164(1):54-65. PubMed ID: 23022520 [TBL] [Abstract][Full Text] [Related]
14. Effects of water salinity on acid-base balance in decapod crustaceans. Whiteley NM; Scott JL; Breeze SJ; McCann L J Exp Biol; 2001 Mar; 204(Pt 5):1003-11. PubMed ID: 11171423 [TBL] [Abstract][Full Text] [Related]
15. Non-equilibrium acid-base status in C. productus: role of exoskeletal carbonate buffers. Defur PL; Wilkes PR; McMahon BR Respir Physiol; 1980 Dec; 42(3):247-61. PubMed ID: 6784208 [TBL] [Abstract][Full Text] [Related]
16. Sensitivity to near-future CO Whiteley NM; Suckling CC; Ciotti BJ; Brown J; McCarthy ID; Gimenez L; Hauton C Sci Rep; 2018 Oct; 8(1):15639. PubMed ID: 30353120 [TBL] [Abstract][Full Text] [Related]
17. Water bicarbonate modulates the response of the shore crab Carcinus maenas to ocean acidification. Maus B; Bock C; Pörtner HO J Comp Physiol B; 2018 Sep; 188(5):749-764. PubMed ID: 29796734 [TBL] [Abstract][Full Text] [Related]
18. Acid-base regulation during exercise and recovery in the blue crab, Callinectes sapidus. Booth CE; McMahon BR; De Fur PL; Wilkes PR Respir Physiol; 1984 Dec; 58(3):359-76. PubMed ID: 6528111 [TBL] [Abstract][Full Text] [Related]
19. Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. Shrivastava J; Ndugwa M; Caneos W; De Boeck G Aquat Toxicol; 2019 Jul; 212():54-69. PubMed ID: 31075620 [TBL] [Abstract][Full Text] [Related]
20. Prioritization or summation of events? Cardiovascular physiology of postprandial Dungeness crabs in low salinity. McGaw IJ Physiol Biochem Zool; 2006; 79(1):169-77. PubMed ID: 16380938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]