These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1014 related articles for article (PubMed ID: 9231729)
1. Domoic acid neurotoxicity in cultured cerebellar granule neurons is mediated predominantly by NMDA receptors that are activated as a consequence of excitatory amino acid release. Berman FW; Murray TF J Neurochem; 1997 Aug; 69(2):693-703. PubMed ID: 9231729 [TBL] [Abstract][Full Text] [Related]
2. Are NMDA or AMPA/kainate receptor antagonists more efficacious in the delayed treatment of excitotoxic neuronal injury? Prehn JH; Lippert K; Krieglstein J Eur J Pharmacol; 1995 Jan; 292(2):179-89. PubMed ID: 7720791 [TBL] [Abstract][Full Text] [Related]
3. Neuropeptide Y release from cultured hippocampal neurons: stimulation by glutamate acting at N-methyl-D-aspartate and AMPA receptors. Gemignani A; Marchese S; Fontana G; Raiteri M Neuroscience; 1997 Nov; 81(1):23-31. PubMed ID: 9300398 [TBL] [Abstract][Full Text] [Related]
4. Real-time imaging of intrinsic optical signals during early excitotoxicity evoked by domoic acid in the rat hippocampal slice. Polischuk TM; Andrew RD Can J Physiol Pharmacol; 1996 Jun; 74(6):712-22. PubMed ID: 8909784 [TBL] [Abstract][Full Text] [Related]
5. Role of desensitization and subunit expression for kainate receptor-mediated neurotoxicity in murine neocortical cultures. Jensen JB; Schousboe A; Pickering DS J Neurosci Res; 1999 Jan; 55(2):208-17. PubMed ID: 9972823 [TBL] [Abstract][Full Text] [Related]
6. Effects of decahydroisoquinoline-3-carboxylic acid monohydrate, a novel AMPA receptor antagonist, on glutamate-induced CA2+ responses and neurotoxicity in rat cortical and cerebellar granule neurons. Liljequist S; Cebers G; Kalda A Biochem Pharmacol; 1995 Nov; 50(11):1761-74. PubMed ID: 8615854 [TBL] [Abstract][Full Text] [Related]
7. Domoic acid neurotoxicity in cultured cerebellar granule neurons is controlled preferentially by the NMDA receptor Ca(2+) influx pathway. Berman FW; LePage KT; Murray TF Brain Res; 2002 Jan; 924(1):20-9. PubMed ID: 11743991 [TBL] [Abstract][Full Text] [Related]
8. Brevetoxins cause acute excitotoxicity in primary cultures of rat cerebellar granule neurons. Berman FW; Murray TF J Pharmacol Exp Ther; 1999 Jul; 290(1):439-44. PubMed ID: 10381810 [TBL] [Abstract][Full Text] [Related]
9. Failure of glycine site NMDA receptor antagonists to protect against L-2-chloropropionic acid-induced neurotoxicity highlights the uniqueness of cerebellar NMDA receptors. Widdowson PS; Gyte AJ; Upton R; Wyatt I Brain Res; 1996 Nov; 738(2):236-42. PubMed ID: 8955518 [TBL] [Abstract][Full Text] [Related]
10. Neurotoxicity of polyamines and pharmacological neuroprotection in cultures of rat cerebellar granule cells. Sparapani M; Dall'Olio R; Gandolfi O; Ciani E; Contestabile A Exp Neurol; 1997 Nov; 148(1):157-66. PubMed ID: 9398458 [TBL] [Abstract][Full Text] [Related]
11. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels. Babot Z; Cristòfol R; Suñol C Eur J Neurosci; 2005 Jan; 21(1):103-12. PubMed ID: 15654847 [TBL] [Abstract][Full Text] [Related]
12. L-2-chloropropionic acid inhibits glutamate and aspartate release from rat cerebellar slices but does not activate cerebellar NMDA receptors: implications for L-2-chloropropionic acid-induced neurotoxicity. Widdowson PS; Briggs I; BoSmith RE; Sturgess NC; Rosbottom A; Smith JC; Wyatt I Neurotoxicology; 1997; 18(1):169-77. PubMed ID: 9215999 [TBL] [Abstract][Full Text] [Related]
13. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx. Urushitani M; Nakamizo T; Inoue R; Sawada H; Kihara T; Honda K; Akaike A; Shimohama S J Neurosci Res; 2001 Mar; 63(5):377-87. PubMed ID: 11223912 [TBL] [Abstract][Full Text] [Related]