These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9232003)

  • 21. Comparison of recirculating, static, and elutriate aquatic sediment bioassay procedures.
    Schuytema GS; Nebeker AV; Cairns MA
    Bull Environ Contam Toxicol; 1996 May; 56(5):742-9. PubMed ID: 8661857
    [No Abstract]   [Full Text] [Related]  

  • 22. [Polychlorinated dibenzodioxins and dibenzofurans in water, sediment and soil. A general overview of the pollution status].
    Christmann W
    Schriftenr Ver Wasser Boden Lufthyg; 1990; 82():71-82. PubMed ID: 2087648
    [No Abstract]   [Full Text] [Related]  

  • 23. Accumulation and toxicity of aluminium-contaminated food in the freshwater crayfish, Pacifastacus leniusculus.
    Woodburn K; Walton R; McCrohan C; White K
    Aquat Toxicol; 2011 Oct; 105(3-4):535-42. PubMed ID: 21924698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Method for the preliminary assessment of aquatic contamination sites using sediment extract toxicity tests.
    Larson LJ
    Bull Environ Contam Toxicol; 1989 Feb; 42(2):218-25. PubMed ID: 2920229
    [No Abstract]   [Full Text] [Related]  

  • 25. Aluminium speciation in environmental samples: a review.
    Scancar J; Milacic R
    Anal Bioanal Chem; 2006 Oct; 386(4):999-1012. PubMed ID: 16622673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aluminium Toxicity to Plants as Influenced by the Properties of the Root Growth Environment Affected by Other Co-Stressors: A Review.
    Siecińska J; Nosalewicz A
    Rev Environ Contam Toxicol; 2017; 243():1-26. PubMed ID: 28005214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Determining the levels of trifumin and the products of its transformation in agricultural cultures, water and soil].
    Pis'mennaia MV
    Gig Sanit; 1991 Mar; (3):83-4. PubMed ID: 1885028
    [No Abstract]   [Full Text] [Related]  

  • 28. [Possibilities for purifying chemically polluted sites by biological procedures].
    Filip Z
    Schriftenr Ver Wasser Boden Lufthyg; 1990; 82():227-31. PubMed ID: 2087641
    [No Abstract]   [Full Text] [Related]  

  • 29. Ethoprophos fate on soil-water interface and effects on non-target terrestrial and aquatic biota under Mediterranean crop-based scenarios.
    Leitão S; Moreira-Santos M; Van den Brink PJ; Ribeiro R; José Cerejeira M; Sousa JP
    Ecotoxicol Environ Saf; 2014 May; 103():36-44. PubMed ID: 24562181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Experiences with biologically active tests in the study of soil pollutants].
    Sellner M; Dau U
    Schriftenr Ver Wasser Boden Lufthyg; 1992; 89():437-49. PubMed ID: 1307812
    [No Abstract]   [Full Text] [Related]  

  • 31. The application of predictive models in the environmental risk assessment of ECONOR.
    Boxall AB; Oakes D; Ripley P; Watts CD
    Chemosphere; 2000 Apr; 40(7):775-81. PubMed ID: 10705556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short-term experimental acidification of a Welsh stream: toxicity of different forms of aluminium at low pH to fish and invertebrates.
    McCahon CP; Pascoe D
    Arch Environ Contam Toxicol; 1989; 18(1-2):233-42. PubMed ID: 2923492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The variations of aluminium species in mountainous forest soils and its implications to soil acidification.
    Bradová M; Tejnecký V; Borůvka L; Němeček K; Ash C; Šebek O; Svoboda M; Zenáhlíková J; Drábek O
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16676-87. PubMed ID: 26084557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Microbial biotests with sediments].
    Ahlf W; Gunkel J; Liss W; Neumann-Hensel H; Rönnpagel K; Förstner U
    Schriftenr Ver Wasser Boden Lufthyg; 1992; 89():427-35. PubMed ID: 1307811
    [No Abstract]   [Full Text] [Related]  

  • 35. Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils.
    Yvanes-Giuliani YAM; Waite TD; Collins RN
    Sci Total Environ; 2014 Jul; 485-486():232-240. PubMed ID: 24727041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Hygienic evaluation of sediments as a secondary source of water pollution in areas near cellulose and paper mills].
    Vorob'eva LV
    Gig Sanit; 1991 Jun; (6):22-5. PubMed ID: 1769570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High soil and groundwater arsenic levels induce high body arsenic loads, health risk and potential anemia for inhabitants of northeastern Iran.
    Taheri M; Mehrzad J; Mahmudy Gharaie MH; Afshari R; Dadsetan A; Hami S
    Environ Geochem Health; 2016 Apr; 38(2):469-82. PubMed ID: 26100324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rice paddies map arsenic problem.
    Lubick N
    Environ Sci Technol; 2007 Sep; 41(17):5928. PubMed ID: 17937259
    [No Abstract]   [Full Text] [Related]  

  • 39. [Hygienic establishment of the maximum permissible fluorine content in the soil as the basis for preventing anthropogenic fluorosis foci].
    Tsipriian VI; Stepanenko GA; Shvaĭko II; Bur'ian PM; Muzychuk NT
    Gig Sanit; 1988 Mar; (3):18-21. PubMed ID: 3396884
    [No Abstract]   [Full Text] [Related]  

  • 40. Water quality guideline values for aluminium, gallium and molybdenum in marine environments.
    van Dam JW; Trenfield MA; Streten C; Harford AJ; Parry D; van Dam RA
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26592-26602. PubMed ID: 29998444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.