These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9232019)

  • 1. The two-stage model of carcinogenesis: overcoming the nonidentifiability dilemma.
    Sherman CD; Portier CJ
    Risk Anal; 1997 Jun; 17(3):367-74. PubMed ID: 9232019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nonidentifiability aspect of the two-stage model of carcinogenesis.
    Hanin LG; Yakovlev AYu
    Risk Anal; 1996 Oct; 16(5):711-5. PubMed ID: 8962520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameter estimation for multistage clonal expansion models from cancer incidence data: A practical identifiability analysis.
    Brouwer AF; Meza R; Eisenberg MC
    PLoS Comput Biol; 2017 Mar; 13(3):e1005431. PubMed ID: 28288156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognizing Structural Nonidentifiability: When Experiments Do Not Provide Information About Important Parameters and Misleading Models Can Still Have Great Fit.
    Schmidt PJ; Emelko MB; Thompson ME
    Risk Anal; 2020 Feb; 40(2):352-369. PubMed ID: 31441953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the stage of progression in hepatocarcinogenesis in the rat.
    Pitot HC
    Basic Life Sci; 1991; 57():3-18. PubMed ID: 1814289
    [No Abstract]   [Full Text] [Related]  

  • 6. Calculating tumor incidence rates in stochastic models of carcinogenesis.
    Portier CJ; Kopp-Schneider A; Sherman CD
    Math Biosci; 1996 Jul; 135(2):129-46. PubMed ID: 8768218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetry, identifiability, and prediction uncertainties in multistage clonal expansion (MSCE) models of carcinogenesis.
    Cox LA; Huber WA
    Risk Anal; 2007 Dec; 27(6):1441-53. PubMed ID: 18093045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic simulation of a multistage model of carcinogenesis.
    Sherman CD; Portier CJ
    Math Biosci; 1996 May; 134(1):35-50. PubMed ID: 8935954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biologically motivated cancer risk models.
    Thorslund TW; Brown CC; Charnley G
    Risk Anal; 1987 Mar; 7(1):109-19. PubMed ID: 3615992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The use of the catastrophe theory method in simulating dynamics of multi-stage skin cancerogenesis].
    Mizgirev IV
    Eksp Onkol; 1987; 9(6):40-4. PubMed ID: 3436290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating additional biological phenomena into two-stage cancer models.
    Sielken RL; Bretzlaff RS; Stevenson DE
    Prog Clin Biol Res; 1994; 387():237-60. PubMed ID: 7972250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some properties of the hazard function of the two-mutation clonal expansion model.
    Heidenreich WF; Luebeck EG; Moolgavkar SH
    Risk Anal; 1997 Jun; 17(3):391-9. PubMed ID: 9232020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatic and pulmonary carcinogenicity of methylene chloride in mice: a search for mechanisms.
    Maronpot RR; Devereux TR; Hegi M; Foley JF; Kanno J; Wiseman R; Anderson MW
    Toxicology; 1995 Sep; 102(1-2):73-81. PubMed ID: 7482563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for parametric estimation of the number and size distribution of cell clusters from observations in a section plane.
    de Gunst MC; Luebeck EG
    Biometrics; 1998 Mar; 54(1):100-12. PubMed ID: 9544509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating biological information in quantitative risk assessment: an example with methylene chloride.
    Clewell HJ
    Toxicology; 1995 Sep; 102(1-2):83-94. PubMed ID: 7482564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using cell replication data in mathematical modeling in carcinogenesis.
    Portier CJ; Kopp-Schneider A; Sherman CD
    Environ Health Perspect; 1993 Dec; 101 Suppl 5(Suppl 5):79-86. PubMed ID: 8013428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic description of initiation and promotion in experimental carcinogenesis.
    Luebeck EG; Moolgavkar SH
    Ann Ist Super Sanita; 1991; 27(4):575-80. PubMed ID: 1840318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifiability of parameters in the Yakovlev-Polig model of carcinogenesis.
    Hanin LG; Boucher KM
    Math Biosci; 1999 Aug; 160(1):1-24. PubMed ID: 10465929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for hepatocarcinogenesis treating phenotypical changes in focal hepatocellular lesions as epigenetic events.
    Kopp-Schneider A; Portier C; Bannasch P
    Math Biosci; 1998 Mar; 148(2):181-204. PubMed ID: 9610106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of hyperplasia in liver carcinogenesis.
    Mirsalis JC; Steinmetz KL
    Prog Clin Biol Res; 1990; 331():149-61. PubMed ID: 2179957
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.