BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 9232183)

  • 1. Detection of mineral density on the surface of mouse parietal bones: backscattered electron imaging of low accelerating voltage scanning electron microscopy.
    Hashizume H; Abe K; Ushiki T
    Arch Histol Cytol; 1997 Jun; 60(2):195-204. PubMed ID: 9232183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two types of bone resorption lacunae in the mouse parietal bones as revealed by scanning electron microscopy and histochemistry.
    Ren S; Takano H; Abe K
    Arch Histol Cytol; 2005 Jun; 68(2):103-13. PubMed ID: 16079456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-voltage backscattered electron imaging of non-coated biological samples in a low-vacuum environment using a variable-pressure scanning electron microscope with a YAG-detector.
    Ushiki T; Hashizume H; Itoh S; Kuboki K; Saito S; Tanaka K
    J Electron Microsc (Tokyo); 1998; 47(4):351-4. PubMed ID: 9802226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Backscattered electron imaging and elemental analysis of rapidly frozen plant cells using variable accelerating voltage.
    Kaneko Y; Tokunaga M; Tanaka K; Atsuzawa K; Nishimura M
    Microscopy (Oxf); 2018 Apr; 67(2):125-128. PubMed ID: 29373748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backscattered electron imaging for high resolution surface scanning electron microscopy with a new type YAG-detector.
    Walther P; Autrata R; Chen Y; Pawley JB
    Scanning Microsc; 1991 Jun; 5(2):301-9; discussion 310. PubMed ID: 1947922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Backscattered electron imaging for reduced charging of moisturized corn starch granules: implications for versatile imagery of hygroscopic powder specimens.
    Kim KW; Choi SJ; Moon TW
    Micron; 2008 Dec; 39(8):1160-5. PubMed ID: 18586501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advantages of stereo imaging of metallic surfaces with low voltage backscattered electrons in a field emission scanning electron microscope.
    Richards RG; Wieland M; Textor M
    J Microsc; 2000 Aug; 199 (Pt 2)():115-23. PubMed ID: 10947904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities.
    Roschger P; Plenk H; Klaushofer K; Eschberger J
    Scanning Microsc; 1995 Mar; 9(1):75-86; discussion 86-8. PubMed ID: 8553027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulations of electron scattering in bone.
    Howell PG; Boyde A
    Bone; 1994; 15(3):285-91. PubMed ID: 8068449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface structures and osteoclasts of mouse parietal bones: a light and scanning electron microscopic study.
    Abe K; Kanno T; Schneider GB
    Arch Histol Jpn; 1983 Dec; 46(5):663-76. PubMed ID: 6673690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex differences in bone resorption: a scanning electron microscopic study of mouse parietal bones.
    Abe K; Kanno T; Kitao K; Schneider GB
    Arch Histol Jpn; 1984 Oct; 47(4):429-40. PubMed ID: 6542771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-Surface Scintillator for Low Accelerating Voltage Scanning Electron Microscopy (SEM) Imaging.
    Tzolov MB; Barbi NC; Bowser CT; Healy O
    Microsc Microanal; 2018 Oct; 24(5):488-496. PubMed ID: 30334513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of immunolabeled membrane receptors in uncoated SEM specimens.
    Heinzmann U; Reninger A; Autrata R; Höfler H
    Scanning; 1994; 16(4):241-5. PubMed ID: 7921366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of Endochondral Ossification in Human Fetalcartilage Anlagen of Metacarpals: Comparative Morphology of Mineral Deposition in Cartilage and in the Periosteal Bone Matrix.
    Pazzaglia UE; Reguzzoni M; Pagani F; Sibilia V; Congiu T; Salvi AG; Benetti A
    Anat Rec (Hoboken); 2018 Apr; 301(4):571-580. PubMed ID: 29266881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution scanning electron microscopy of frozen-hydrated cells.
    Walther P; Chen Y; Pech LL; Pawley JB
    J Microsc; 1992 Nov; 168(Pt 2):169-80. PubMed ID: 1464901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies.
    Roschger P; Fratzl P; Eschberger J; Klaushofer K
    Bone; 1998 Oct; 23(4):319-26. PubMed ID: 9763143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compositional contrast of uncoated fungal spores and stained section-face by low-loss backscattered electron imaging.
    Kim KW; Jaksch H
    Micron; 2009 Oct; 40(7):724-9. PubMed ID: 19487128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backscattered electron imaging of the undersurface of resin-embedded cells by field-emission scanning electron microscopy.
    Richards RG; Gwynn IA
    J Microsc; 1995 Jan; 177(Pt 1):43-52. PubMed ID: 7897647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducible methods for calibrating the backscattered electron signal for quantitative assessment of mineral content in bone.
    Boyce TM; Bloebaum RD; Bachus KN; Skedros JG
    Scanning Microsc; 1990 Sep; 4(3):591-600; discussion 600-3. PubMed ID: 2080424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Inclusion Microanalysis in Steel by Computer-Based Scanning Electron Microscopy: Accelerating Voltage, Backscattered Electron Image Quality, and Analysis Time.
    Tang D; Ferreira ME; Pistorius PC
    Microsc Microanal; 2017 Dec; 23(6):1082-1090. PubMed ID: 29122056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.