These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9232245)

  • 1. Amplification of 4-9-kb human genomic DNA flanking a known site using a panhandle PCR variant.
    Jones DH; Winistorfer SC
    Biotechniques; 1997 Jul; 23(1):132-8. PubMed ID: 9232245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for the amplification of unknown flanking DNA: targeted inverted repeat amplification.
    Jones DH; Winistorfer SC
    Biotechniques; 1993 Nov; 15(5):894-904. PubMed ID: 7505601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA.
    Jones DH; Winistorfer SC
    Nucleic Acids Res; 1992 Feb; 20(3):595-600. PubMed ID: 1371352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BglII-based panhandle and reverse panhandle PCR approaches increase capability for cloning der(II) and der(other) genomic breakpoint junctions of MLL translocations.
    Robinson BW; Slater DJ; Felix CA
    Genes Chromosomes Cancer; 2006 Aug; 45(8):740-53. PubMed ID: 16703585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome walking with 2- to 4-kb steps using panhandle PCR.
    Jones DH; Winistorfer SC
    PCR Methods Appl; 1993 Feb; 2(3):197-203. PubMed ID: 7680264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Template integrity is essential for PCR amplification of 20- to 30-kb sequences from genomic DNA.
    Cheng S; Chen Y; Monforte JA; Higuchi R; Van Houten B
    PCR Methods Appl; 1995 Apr; 4(5):294-8. PubMed ID: 7580917
    [No Abstract]   [Full Text] [Related]  

  • 7. [Polymerase chain reaction, cold probes and clinical diagnosis].
    Haras D; Amoros JP
    Sante; 1994; 4(1):43-52. PubMed ID: 7909267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-throughput genome-walking method and its use for cloning unknown flanking sequences.
    Reddy PS; Mahanty S; Kaul T; Nair S; Sopory SK; Reddy MK
    Anal Biochem; 2008 Oct; 381(2):248-53. PubMed ID: 18674512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel PCR technique using Alu-specific primers to identify unknown flanking sequences from the human genome.
    Minami M; Poussin K; Bréchot C; Paterlini P
    Genomics; 1995 Sep; 29(2):403-8. PubMed ID: 8666388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective amplification of long targets from cloned inserts and human genomic DNA.
    Cheng S; Fockler C; Barnes WM; Higuchi R
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5695-9. PubMed ID: 8202550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A whole genome amplification method to generate long fragments from low quantities of genomic DNA.
    Kittler R; Stoneking M; Kayser M
    Anal Biochem; 2002 Jan; 300(2):237-44. PubMed ID: 11779116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective RNA amplification: a novel method using dUMP-containing primers and uracil DNA glycosylase.
    Buchman GW; Schuster DM; Rashtchian A
    PCR Methods Appl; 1993 Aug; 3(1):28-31. PubMed ID: 7693113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse Polymerase Chain Reaction (PCR).
    Green MR; Sambrook J
    Cold Spring Harb Protoc; 2019 Feb; 2019(2):. PubMed ID: 30710023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches.
    Green SJ; Venkatramanan R; Naqib A
    PLoS One; 2015; 10(5):e0128122. PubMed ID: 25996930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single oligonucleotide nested PCR: a rapid method for the isolation of genes and their flanking regions from expressed sequence tags.
    Antal Z; Rascle C; Fèvre M; Bruel C
    Curr Genet; 2004 Oct; 46(4):240-6. PubMed ID: 15349749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction.
    Wu DY; Ugozzoli L; Pal BK; Qian J; Wallace RB
    DNA Cell Biol; 1991 Apr; 10(3):233-8. PubMed ID: 2012681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplification of human genomic DNA sequences with polymerase chain reaction using a single oligonucleotide primer.
    Luo L; Diamandis EP
    J Clin Lab Anal; 1999; 13(2):69-74. PubMed ID: 10102135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic amplification of DNA by PCR: standard procedures and optimization.
    Kramer MF; Coen DM
    Curr Protoc Cytom; 2006 Aug; Appendix 3():Appendix 3K. PubMed ID: 18770830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole genome amplification using a degenerate oligonucleotide primer allows hundreds of genotypes to be performed on less than one nanogram of genomic DNA.
    Cheung VG; Nelson SF
    Proc Natl Acad Sci U S A; 1996 Dec; 93(25):14676-9. PubMed ID: 8962113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient amplification of the HLA-DQA1 gene in single genomes using a semi-nested polymerase chain reaction.
    Uchihi R; Yamamoto T; Kojima T; Tamaki K; Katsumata Y
    Nihon Hoigaku Zasshi; 1994 Oct; 48(5):329-35. PubMed ID: 7807714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.