These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9232499)

  • 1. Coralline hydroxyapatite: a bone graft alternative in foot and ankle surgery.
    Rahimi F; Maurer BT; Enzweiler MG
    J Foot Ankle Surg; 1997; 36(3):192-203; discussion 255-6. PubMed ID: 9232499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyapatite as a bone substitute.
    Mahan KT; Carey MJ
    J Am Podiatr Med Assoc; 1999 Aug; 89(8):392-7. PubMed ID: 10466291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion.
    Boden SD; Martin GJ; Morone M; Ugbo JL; Titus L; Hutton WC
    Spine (Phila Pa 1976); 1999 Feb; 24(4):320-7. PubMed ID: 10065514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coralline hydroxyapatite bone graft substitute in hindfoot surgery.
    Coughlin MJ; Grimes JS; Kennedy MP
    Foot Ankle Int; 2006 Jan; 27(1):19-22. PubMed ID: 16442024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of bone graft substitutes in lower extremity reconstructive surgery.
    Scranton PE
    Foot Ankle Int; 2002 Aug; 23(8):689-92. PubMed ID: 12199380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coralline hydroxyapatite bone graft substitutes in a canine metaphyseal defect model: radiographic-biomechanical correlation.
    Sartoris DJ; Holmes RE; Tencer AF; Mooney V; Resnick D
    Skeletal Radiol; 1986; 15(8):635-41. PubMed ID: 3810188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term evaluation of the use of coralline hydroxyapatite in orthognathic surgery.
    Cottrell DA; Wolford LM
    J Oral Maxillofac Surg; 1998 Aug; 56(8):935-41; discussion 941-2. PubMed ID: 9710187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postoperative Foot and Ankle MR Imaging.
    Madoff SD; Kaye J; Newman JS
    Magn Reson Imaging Clin N Am; 2017 Feb; 25(1):195-209. PubMed ID: 27888848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone graft substitutes: osteobiologics.
    Rush SM
    Clin Podiatr Med Surg; 2005 Oct; 22(4):619-30, viii. PubMed ID: 16213384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coralline hydroxyapatite bone-graft substitutes in a canine metaphyseal defect model. Radiographic-histometric correlation.
    Sartoris DJ; Holmes RE; Bucholz RW; Mooney V; Resnick D
    Invest Radiol; 1986 Nov; 21(11):851-7. PubMed ID: 2877959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coralline hydroxyapatite bone graft substitutes.
    Elsinger EC; Leal L
    J Foot Ankle Surg; 1996; 35(5):396-9. PubMed ID: 8915861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo evaluation of coralline hydroxyapatite and direct current electrical stimulation in lumbar spinal fusion.
    Bozic KJ; Glazer PA; Zurakowski D; Simon BJ; Lipson SJ; Hayes WC
    Spine (Phila Pa 1976); 1999 Oct; 24(20):2127-33. PubMed ID: 10543011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A historical review of common bone graft materials in foot and ankle surgery.
    Arner JW; Santrock RD
    Foot Ankle Spec; 2014 Apr; 7(2):143-51. PubMed ID: 24425807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures.
    Bucholz RW; Carlton A; Holmes R
    Clin Orthop Relat Res; 1989 Mar; (240):53-62. PubMed ID: 2537166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospective, randomized, multi-center feasibility trial of rhPDGF-BB versus autologous bone graft in a foot and ankle fusion model.
    Digiovanni CW; Baumhauer J; Lin SS; Berberian WS; Flemister AS; Enna MJ; Evangelista P; Newman J
    Foot Ankle Int; 2011 Apr; 32(4):344-54. PubMed ID: 21733435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous tantalum as a structural graft in foot and ankle surgery.
    Sagherian BH; Claridge RJ
    Foot Ankle Int; 2012 Mar; 33(3):179-89. PubMed ID: 22734278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model. Radiographic-histometric correlation.
    Sartoris DJ; Holmes RE; Bucholz RW; Mooney V; Resnick D
    Invest Radiol; 1987 Jul; 22(7):590-6. PubMed ID: 3623863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The rate of vascularization of coralline hydroxyapatite.
    Grenga TE; Zins JE; Bauer TW
    Plast Reconstr Surg; 1989 Aug; 84(2):245-9. PubMed ID: 2473482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coralline hydroxyapatite bone graft substitutes. Evaluation of bone density with dual energy x-ray absorptiometry.
    Preidler KW; Lemperle SM; Holmes RE; Calhoun CJ; Shors EC; Brossmann J; Sartoris DJ
    Invest Radiol; 1996 Nov; 31(11):716-23. PubMed ID: 8915753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced bioactivity of a poly(propylene fumarate) bone graft substitute by augmentation with nano-hydroxyapatite.
    Lewandrowski KU; Bondre SP; Wise DL; Trantolo DJ
    Biomed Mater Eng; 2003; 13(2):115-24. PubMed ID: 12775902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.