These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 9232522)
1. Mechanistic roles of neutral surfactants on concurrent polarized and passive membrane transport of a model peptide in Caco-2 cells. Nerurkar MM; Ho NF; Burton PS; Vidmar TJ; Borchardt RT J Pharm Sci; 1997 Jul; 86(7):813-21. PubMed ID: 9232522 [TBL] [Abstract][Full Text] [Related]
2. The use of surfactants to enhance the permeability of peptides through Caco-2 cells by inhibition of an apically polarized efflux system. Nerurkar MM; Burton PS; Borchardt RT Pharm Res; 1996 Apr; 13(4):528-34. PubMed ID: 8710741 [TBL] [Abstract][Full Text] [Related]
3. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Rege BD; Kao JP; Polli JE Eur J Pharm Sci; 2002 Sep; 16(4-5):237-46. PubMed ID: 12208453 [TBL] [Abstract][Full Text] [Related]
4. A biophysical model of passive and polarized active transport processes in Caco-2 cells: approaches to uncoupling apical and basolateral membrane events in the intact cell. Ho NF; Burton PS; Conradi RA; Barsuhn CL J Pharm Sci; 1995 Jan; 84(1):21-7. PubMed ID: 7714738 [TBL] [Abstract][Full Text] [Related]
5. Stereoselective transport and uptake of propranolol across human intestinal Caco-2 cell monolayers. Wang Y; Cao J; Wang X; Zeng S Chirality; 2010 Mar; 22(3):361-8. PubMed ID: 19575464 [TBL] [Abstract][Full Text] [Related]
6. Quantitative and Mechanistic Assessment of Model Lipophilic Drugs in Micellar Solutions in the Transport Kinetics Across MDR1-MDCK Cell Monolayers. Ho NFH; Nielsen J; Peterson M; Burton PS J Pharm Sci; 2016 Feb; 105(2):904-914. PubMed ID: 26869435 [TBL] [Abstract][Full Text] [Related]
7. Transport characteristics of peptidomimetics. Effect of the pyrrolinone bioisostere on transport across Caco-2 cell monolayers. Sudoh M; Pauletti GM; Yao W; Moser W; Yokoyama A; Pasternak A; Sprengeler PA; Smith AB; Hirschmann R; Borchardt RT Pharm Res; 1998 May; 15(5):719-25. PubMed ID: 9619780 [TBL] [Abstract][Full Text] [Related]
8. Modulation of intestinal P-glycoprotein function by cremophor EL and other surfactants by an in vitro diffusion chamber method using the isolated rat intestinal membranes. Shono Y; Nishihara H; Matsuda Y; Furukawa S; Okada N; Fujita T; Yamamoto A J Pharm Sci; 2004 Apr; 93(4):877-85. PubMed ID: 14999725 [TBL] [Abstract][Full Text] [Related]
9. Intestinal transport of bis(12)-hupyridone in Caco-2 cells and its improved permeability by the surfactant Brij-35. Yu H; Hu YQ; Ip FC; Zuo Z; Han YF; Ip NY Biopharm Drug Dispos; 2011 Apr; 32(3):140-50. PubMed ID: 21271607 [TBL] [Abstract][Full Text] [Related]
10. Impact of cremophor-EL and polysorbate-80 on digoxin permeability across rat jejunum: delineation of thermodynamic and transporter related events using the reciprocal permeability approach. Katneni K; Charman SA; Porter CJ J Pharm Sci; 2007 Feb; 96(2):280-93. PubMed ID: 17051595 [TBL] [Abstract][Full Text] [Related]
11. Evidence for a polarized efflux system for peptides in the apical membrane of Caco-2 cells. Burton PS; Conradi RA; Hilgers AR; Ho NF Biochem Biophys Res Commun; 1993 Feb; 190(3):760-6. PubMed ID: 8439326 [TBL] [Abstract][Full Text] [Related]
12. Functional characterization of peptide transporters in MDCKII-MDR1 cell line as a model for oral absorption studies. Agarwal S; Jain R; Pal D; Mitra AK Int J Pharm; 2007 Mar; 332(1-2):147-52. PubMed ID: 17097248 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells. Makhey VD; Guo A; Norris DA; Hu P; Yan J; Sinko PJ Pharm Res; 1998 Aug; 15(8):1160-7. PubMed ID: 9706044 [TBL] [Abstract][Full Text] [Related]
14. Carrier mechanisms involved in the transepithelial transport of bis(POM)-PMEA and its metabolites across Caco-2 monolayers. Annaert P; Van Gelder J; Naesens L; De Clercq E; Van den Mooter G; Kinget R; Augustijns P Pharm Res; 1998 Aug; 15(8):1168-73. PubMed ID: 9706045 [TBL] [Abstract][Full Text] [Related]
15. Evidence for a polarized efflux system in CACO-2 cells capable of modulating cyclosporin A transport. Augustijns PF; Bradshaw TP; Gan LS; Hendren RW; Thakker DR Biochem Biophys Res Commun; 1993 Dec; 197(2):360-5. PubMed ID: 7903526 [TBL] [Abstract][Full Text] [Related]
16. [Absorption and transport of isoflavonoid compounds from Tongmai formula across human intestinal epithelial (Caco-2) cells in vitro]. Wang FR; Yang XW Zhongguo Zhong Yao Za Zhi; 2017 Aug; 42(16):3206-3212. PubMed ID: 29171242 [TBL] [Abstract][Full Text] [Related]
17. [Study of the effect of surface-active agents on living cells, used as component parts in microemulsions, based on their chemical structures and critical micelle-formative concentration (CMC)]. Ujhelyi Z; Vecsernyés M; Bácskay I Acta Pharm Hung; 2013; 83(1):3-11. PubMed ID: 23821837 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers. Liang E; Proudfoot J; Yazdanian M Pharm Res; 2000 Oct; 17(10):1168-74. PubMed ID: 11145220 [TBL] [Abstract][Full Text] [Related]
19. Secretory transport of ranitidine and famotidine across Caco-2 cell monolayers. Lee K; Ng C; Brouwer KL; Thakker DR J Pharmacol Exp Ther; 2002 Nov; 303(2):574-80. PubMed ID: 12388638 [TBL] [Abstract][Full Text] [Related]
20. Transport of the investigational anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid and its acyl glucuronide by human intestinal Caco-2 cells. Zhou S; Feng X; Kestell P; Paxton JW; Baguley BC; Chan E Eur J Pharm Sci; 2005 Apr; 24(5):513-24. PubMed ID: 15784341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]