These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 9232522)
21. Nucleobase- and p-glycoprotein-mediated transport of AG337 in a Caco-2 cell culture model. Hu M; Chen J Mol Pharm; 2004; 1(3):194-200. PubMed ID: 15981922 [TBL] [Abstract][Full Text] [Related]
22. Effects of chlorophyllin on transport of dibenzo(a, l)pyrene, 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine, and aflatoxin B(1) across Caco-2 cell monolayers. Mata JE; Yu Z; Gray JE; Williams DE; Rodriguez-Proteau R Toxicology; 2004 Mar; 196(1-2):117-25. PubMed ID: 15036761 [TBL] [Abstract][Full Text] [Related]
23. [Absorption of papaverine, laudanosine and cepharanthine across human intestine by using human Caco-2 cells monolayers model]. Ma L; Yang XW Yao Xue Xue Bao; 2008 Feb; 43(2):202-7. PubMed ID: 18507350 [TBL] [Abstract][Full Text] [Related]
24. [Absorption of coptisine chloride and berberrubine across human intestinal epithelial by using human Caco-2 cell monolayers]. Ma L; Yang XW Zhongguo Zhong Yao Za Zhi; 2007 Dec; 32(23):2523-7. PubMed ID: 18330249 [TBL] [Abstract][Full Text] [Related]
25. Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Horie K; Tang F; Borchardt RT Pharm Res; 2003 Feb; 20(2):161-8. PubMed ID: 12636153 [TBL] [Abstract][Full Text] [Related]
26. A mechanistic study of the intestinal absorption of cryptotanshinone, the major active constituent of Salvia miltiorrhiza. Zhang J; Huang M; Guan S; Bi HC; Pan Y; Duan W; Chan SY; Chen X; Hong YH; Bian JS; Yang HY; Zhou S J Pharmacol Exp Ther; 2006 Jun; 317(3):1285-94. PubMed ID: 16497784 [TBL] [Abstract][Full Text] [Related]
27. Effect of the non-ionic surfactant Poloxamer 188 on passive permeability of poorly soluble drugs across Caco-2 cell monolayers. Fischer SM; Brandl M; Fricker G Eur J Pharm Biopharm; 2011 Oct; 79(2):416-22. PubMed ID: 21549839 [TBL] [Abstract][Full Text] [Related]
28. Caco-2 cells and Biopharmaceutics Classification System (BCS) for prediction of transepithelial transport of xenobiotics (model drug: caffeine). Smetanova L; Stetinova V; Kholova D; Kvetina J; Smetana J; Svoboda Z Neuro Endocrinol Lett; 2009; 30 Suppl 1():101-5. PubMed ID: 20027153 [TBL] [Abstract][Full Text] [Related]
29. The transport of lysine across monolayers of human cultured intestinal cells (Caco-2) depends on Na(+)-dependent and Na(+)-independent mechanisms on different plasma membrane domains. Ferruzza S; Ranaldi G; Di Girolamo M; Sambuy Y J Nutr; 1995 Oct; 125(10):2577-85. PubMed ID: 7562093 [TBL] [Abstract][Full Text] [Related]
30. CYP3A-like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells. Gan LS; Moseley MA; Khosla B; Augustijns PF; Bradshaw TP; Hendren RW; Thakker DR Drug Metab Dispos; 1996 Mar; 24(3):344-9. PubMed ID: 8820426 [TBL] [Abstract][Full Text] [Related]
31. Role of P-glycoprotein-mediated secretion in absorptive drug permeability: An approach using passive membrane permeability and affinity to P-glycoprotein. Döppenschmitt S; Spahn-Langguth H; Regårdh CG; Langguth P J Pharm Sci; 1999 Oct; 88(10):1067-72. PubMed ID: 10514357 [TBL] [Abstract][Full Text] [Related]
32. Transcellular and lipophilic complex-enhanced intestinal absorption of human growth hormone. Wu SJ; Robinson JR Pharm Res; 1999 Aug; 16(8):1266-72. PubMed ID: 10468030 [TBL] [Abstract][Full Text] [Related]
33. [Studies on predict of absorption of corynanthine, yohimbine, ajmalicine and ajmaline across human intestinal epithelial by using human Caco-2 cells monolayers]. Ma L; Yang XW Zhongguo Zhong Yao Za Zhi; 2008 Oct; 33(20):2373-7. PubMed ID: 19157132 [TBL] [Abstract][Full Text] [Related]
34. Transepithelial transport of artepillin C in intestinal Caco-2 cell monolayers. Konishi Y Biochim Biophys Acta; 2005 Jul; 1713(2):138-44. PubMed ID: 16004960 [TBL] [Abstract][Full Text] [Related]
35. The absorption and transport of magnolol in Caco-2 cell model. Wu AG; Zeng B; Huang MQ; Li SM; Chen JN; Lai XP Chin J Integr Med; 2013 Mar; 19(3):206-11. PubMed ID: 22903441 [TBL] [Abstract][Full Text] [Related]
36. Transport of IRW, an ovotransferrin-derived antihypertensive peptide, in human intestinal epithelial Caco-2 cells. Bejjani S; Wu J J Agric Food Chem; 2013 Feb; 61(7):1487-92. PubMed ID: 23298184 [TBL] [Abstract][Full Text] [Related]
37. Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers. Batrakova EV; Li S; Miller DW; Kabanov AV Pharm Res; 1999 Sep; 16(9):1366-72. PubMed ID: 10496651 [TBL] [Abstract][Full Text] [Related]
38. Effect of polyoxyl 35 castor oil and Polysorbate 80 on the intestinal absorption of digoxin in vitro. Cornaire G; Woodley JF; Saivin S; Legendre JY; Decourt S; Cloarec A; Houin G Arzneimittelforschung; 2000 Jun; 50(6):576-9. PubMed ID: 10918954 [TBL] [Abstract][Full Text] [Related]
39. [Absorption of triterpenoid compounds from Indian bread (Poria cocos) across human intestinal epithelial (Caco-2) cells in vitro]. Zheng Y; Yang XW Zhongguo Zhong Yao Za Zhi; 2008 Jul; 33(13):1596-601. PubMed ID: 18837324 [TBL] [Abstract][Full Text] [Related]
40. Acyloxyalkoxy-based cyclic prodrugs of opioid peptides: evaluation of the chemical and enzymatic stability as well as their transport properties across Caco-2 cell monolayers. Bak A; Gudmundsson OS; Friis GJ; Siahaan TJ; Borchardt RT Pharm Res; 1999 Jan; 16(1):24-9. PubMed ID: 9950274 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]