These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 9232770)
1. Minimal static excess pressure minimises the effect of extracorporeal shock waves on cells and reduces it on gallstones. Delius M Ultrasound Med Biol; 1997; 23(4):611-7. PubMed ID: 9232770 [TBL] [Abstract][Full Text] [Related]
2. Extracorporeal shock waves act by shock wave-gas bubble interaction. Delius M; Ueberle F; Eisenmenger W Ultrasound Med Biol; 1998 Sep; 24(7):1055-9. PubMed ID: 9809639 [TBL] [Abstract][Full Text] [Related]
3. Acoustic energy determines haemoglobin release from erythrocytes by extracorporeal shock waves in vitro. Delius M; Ueberle F; Gambihler S Ultrasound Med Biol; 1995; 21(5):707-10. PubMed ID: 8525561 [TBL] [Abstract][Full Text] [Related]
4. Destruction of gallstones and model stones by extracorporeal shock waves. Delius M; Ueberle F; Gambihler S Ultrasound Med Biol; 1994; 20(3):251-8. PubMed ID: 8059486 [TBL] [Abstract][Full Text] [Related]
5. Biliary lithotripsy: in vitro analysis of gallstone fragmentation for equivalent stone volumes. Torres WE; Baumgartner BR; Jones MT; Nelson RC Radiology; 1990 Nov; 177(2):507-9. PubMed ID: 2217793 [TBL] [Abstract][Full Text] [Related]
6. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy. Wang JC; Zhou Y Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016 [TBL] [Abstract][Full Text] [Related]
7. Cell damage by lithotripter shock waves at high pressure to preclude cavitation. Williams JC; Woodward JF; Stonehill MA; Evan AP; McAteer JA Ultrasound Med Biol; 1999 Nov; 25(9):1445-9. PubMed ID: 10626633 [TBL] [Abstract][Full Text] [Related]
8. Improved results of extracorporeal shock wave lithotripsy with the Dornier MPL 9000 for single gallstones. Malet PF; Wisniewski F; Laufer I; Brugge WR; Rothstein RD; Auteri AG; Gohel V; Rosenberg DJ J Stone Dis; 1993 Oct; 5(4):217-23. PubMed ID: 10146425 [TBL] [Abstract][Full Text] [Related]
9. Fragmentation of gallstones using extracorporeal shock waves: an in vitro study. Schachler R; Sauerbruch T; Wosiewitz U; Holl J; Hahn D; Denk R; Neubrand M; Paumgartner G Hepatology; 1988; 8(4):925-9. PubMed ID: 3391523 [TBL] [Abstract][Full Text] [Related]
10. Extracorporeal shock wave lithotripsy of gall stones: an in vitro comparison between an electrohydraulic and a piezoceramic device. Schachler R; Bird NC; Sauerbruch T; Frost EA; Sackmann M; Paumgartner G; Johnson AG Gut; 1991 Mar; 32(3):312-5. PubMed ID: 2013428 [TBL] [Abstract][Full Text] [Related]
11. The effect of volume and number on fragmentation of gallstones by lithotripsy. Arends TW; Nemcek AA; Rege RV; Nahrwold DL J Surg Res; 1990 Apr; 48(4):279-83. PubMed ID: 2338811 [TBL] [Abstract][Full Text] [Related]
12. In vitro gallstone fragmentation by three piezoelectric lithotripters. Vakil N J Stone Dis; 1993 Jan; 5(1):39-45. PubMed ID: 10148260 [TBL] [Abstract][Full Text] [Related]
13. Extracorporeal shock wave lithotripsy of gallstones in different biles and water in vitro. Nitsche R; Amelsberg A; Berg T; Fölsch UR Digestion; 1994; 55(3):175-8. PubMed ID: 8174831 [TBL] [Abstract][Full Text] [Related]
14. Gallstone extracorporeal shock-wave lithotripsy: time and treatment considerations. Nelson RC; Rowland GA; Torres WE; Baumgartner BR AJR Am J Roentgenol; 1990 Feb; 154(2):291-4. PubMed ID: 2105016 [TBL] [Abstract][Full Text] [Related]
15. Different modes of fragmenting gallstones in extracorporeal shockwave lithotripsy. Nitsche R; Schweinsberg V; Klengel H; Niedmann PD; Fölsch UR Scand J Gastroenterol; 1993 Mar; 28(3):229-34. PubMed ID: 8446847 [TBL] [Abstract][Full Text] [Related]
16. Efficacy of supine versus prone biliary lithotripsy: an in vitro study. Baumgartner BR; Goldstein JH; Torres WE J Stone Dis; 1992 Oct; 4(4):301-5. PubMed ID: 10147811 [TBL] [Abstract][Full Text] [Related]
17. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments. Zhong P; Zhou Y J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829 [TBL] [Abstract][Full Text] [Related]
18. Influence of density and viscosity of fluids on extracorporeal shock wave lithotripsy of gallstones in vitro. Nitsche R; Hinrichsen H; Wilhelm R; Fölsch UR Eur J Med Res; 1996 Jan; 1(4):204-8. PubMed ID: 9386270 [TBL] [Abstract][Full Text] [Related]
19. Electromagnetically generated extracorporeal shock waves for gallstone lithotripsy: in vitro experiments and clinical relevance. Staritz M; Rambow A; Mildenberger P; Goebel M; Scherfe T; Grosse A; Junginger T; Hohenfellner R; Thelen M; Meyer zum Büschenfelde KH Eur J Clin Invest; 1989 Apr; 19(2):142-5. PubMed ID: 2499472 [TBL] [Abstract][Full Text] [Related]
20. Does the rate of extracorporeal shock wave delivery affect stone fragmentation? Greenstein A; Matzkin H Urology; 1999 Sep; 54(3):430-2. PubMed ID: 10475348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]