These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 9233685)
1. During neuronal and glial cell development diet n-6 to n-3 fatty acid ratio alters the fatty acid composition of phosphatidylinositol and phosphatidylserine. Jumpsen JA; Lien EL; Goh YK; Clandinin MT Biochim Biophys Acta; 1997 Jul; 1347(1):40-50. PubMed ID: 9233685 [TBL] [Abstract][Full Text] [Related]
2. Maternal dietary 22 : 6n-3 is more effective than 18 : 3n-3 in increasing the 22 : 6n-3 content in phospholipids of glial cells from neonatal rat brain. Bowen RA; Clandinin MT Br J Nutr; 2005 May; 93(5):601-11. PubMed ID: 15975158 [TBL] [Abstract][Full Text] [Related]
3. Small changes of dietary (n-6) and (n-3)/fatty acid content ration alter phosphatidylethanolamine and phosphatidylcholine fatty acid composition during development of neuronal and glial cells in rats. Jumpsen J; Lien EL; Goh YK; Clandinin MT J Nutr; 1997 May; 127(5):724-31. PubMed ID: 9164993 [TBL] [Abstract][Full Text] [Related]
4. Dietary low linolenic acid compared with docosahexaenoic acid alter synaptic plasma membrane phospholipid fatty acid composition and sodium-potassium ATPase kinetics in developing rats. Bowen RA; Clandinin MT J Neurochem; 2002 Nov; 83(4):764-74. PubMed ID: 12421348 [TBL] [Abstract][Full Text] [Related]
5. Dietary 20:4n-6 and 22:6n-3 modulates the profile of long- and very-long-chain fatty acids, rhodopsin content, and kinetics in developing photoreceptor cells. Suh M; Wierzbicki AA; Lien EL; Clandinin MT Pediatr Res; 2000 Oct; 48(4):524-30. PubMed ID: 11004245 [TBL] [Abstract][Full Text] [Related]
6. High dietary 18:3n-3 increases the 18:3n-3 but not the 22:6n-3 content in the whole body, brain, skin, epididymal fat pads, and muscles of suckling rat pups. Bowen RA; Clandinin MT Lipids; 2000 Apr; 35(4):389-94. PubMed ID: 10858023 [TBL] [Abstract][Full Text] [Related]
7. Does increasing dietary linolenic acid content increase the docosahexaenoic acid content of phospholipids in neuronal cells of neonatal rats? Bowen RA; Wierzbicki AA; Clandinin MT Pediatr Res; 1999 Jun; 45(6):815-9. PubMed ID: 10367771 [TBL] [Abstract][Full Text] [Related]
8. Dietary ganglioside and long-chain polyunsaturated fatty acids increase ganglioside GD3 content and alter the phospholipid profile in neonatal rat retina. Park EJ; Suh M; Clandinin MT Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2571-5. PubMed ID: 15980250 [TBL] [Abstract][Full Text] [Related]
9. Dietary polyunsaturated fatty acids in gestation alter fetal cortical phospholipids, fatty acids and phosphatidylserine synthesis. Tam O; Innis SM Dev Neurosci; 2006; 28(3):222-9. PubMed ID: 16679769 [TBL] [Abstract][Full Text] [Related]
10. Fatty acid profiles of brain phospholipid subclasses of rats fed n - 3 polyunsaturated fatty acids of marine or vegetable origin. A two generation study. Alsted AL; Høy CE Biochim Biophys Acta; 1992 May; 1125(3):237-44. PubMed ID: 1350736 [TBL] [Abstract][Full Text] [Related]
11. Early dietary intervention with structured triacylglycerols containing docosahexaenoic acid. Effect on brain, liver, and adipose tissue lipids. Christensen MM; Høy CE Lipids; 1997 Feb; 32(2):185-91. PubMed ID: 9075209 [TBL] [Abstract][Full Text] [Related]
12. Influence of dietary triacylglycerol structure and level of n-3 fatty acids administered during development on brain phospholipids and memory and learning ability of rats. Sommer Hartvigsen M; Mu H; Sørig Hougaard K; Lund SP; Xu X; Høy CE Ann Nutr Metab; 2004; 48(1):16-27. PubMed ID: 14639042 [TBL] [Abstract][Full Text] [Related]
13. Conversion of alpha-linolenate to docosahexaenoate is not depressed by high dietary levels of linoleate in young rats: tracer evidence using high precision mass spectrometry. Sheaff RC; Su HM; Keswick LA; Brenna JT J Lipid Res; 1995 May; 36(5):998-1008. PubMed ID: 7658170 [TBL] [Abstract][Full Text] [Related]
14. Membrane fatty acid composition of rat skeletal muscle is most responsive to the balance of dietary n-3 and n-6 PUFA. Abbott SK; Else PL; Hulbert AJ Br J Nutr; 2010 Feb; 103(4):522-9. PubMed ID: 19825209 [TBL] [Abstract][Full Text] [Related]
15. Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes, and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n-3 fatty acids. Bourre JM; Pascal G; Durand G; Masson M; Dumont O; Piciotti M J Neurochem; 1984 Aug; 43(2):342-8. PubMed ID: 6736955 [TBL] [Abstract][Full Text] [Related]
16. Effect of different dietary supplemental fats and oils on the tissue fatty acid composition and growth of female broilers. Scaife JR; Moyo J; Galbraith H; Michie W; Campbell V Br Poult Sci; 1994 Mar; 35(1):107-18. PubMed ID: 8199880 [TBL] [Abstract][Full Text] [Related]
17. Influence of dietary fat and feeding period on phosphoinositide metabolism in rat colonocytes. Awad AB; Park Y; Fink CS; Horvath PJ Nutr Cancer; 1994; 21(1):71-81. PubMed ID: 8183724 [TBL] [Abstract][Full Text] [Related]
18. Dietary fatty acid composition in pregnancy alters neurite membrane fatty acids and dopamine in newborn rat brain. Innis SM; de La Presa Owens S J Nutr; 2001 Jan; 131(1):118-22. PubMed ID: 11208947 [TBL] [Abstract][Full Text] [Related]
19. n-3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling. Zhang W; Liu J; Hu X; Li P; Leak RK; Gao Y; Chen J Stroke; 2015 Oct; 46(10):2943-50. PubMed ID: 26374481 [TBL] [Abstract][Full Text] [Related]
20. Post-natal modulation of heart and liver phosphoglyceride fatty acids in pups. Ghebremeskel K; Bitsanis D; Koukkou E; Lowy C; Poston L; Crawford MA Ann Nutr Metab; 1999; 43(6):365-73. PubMed ID: 10725770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]