These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9234192)

  • 1. To quark or to spark, that is the question.
    Lipp P; Bootman MD
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):1. PubMed ID: 9234192
    [No Abstract]   [Full Text] [Related]  

  • 2. Intracellular Ca2+ transients in delta-sarcoglycan knockout mouse skeletal muscle.
    Solares-Pérez A; Sánchez JA; Zentella-Dehesa A; García MC; Coral-Vázquez RM
    Biochim Biophys Acta; 2010 Mar; 1800(3):373-9. PubMed ID: 19931597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of tetracaine on voltage-activated calcium sparks in frog intact skeletal muscle fibers.
    Hollingworth S; Chandler WK; Baylor SM
    J Gen Physiol; 2006 Mar; 127(3):291-307. PubMed ID: 16505149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of calcium sparks in cut skeletal muscle fibers of the frog.
    Chandler WK; Hollingworth S; Baylor SM
    J Gen Physiol; 2003 Apr; 121(4):311-24. PubMed ID: 12642597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forming a multinucleated cell: molecules that regulate myoblast fusion.
    Horsley V; Pavlath GK
    Cells Tissues Organs; 2004; 176(1-3):67-78. PubMed ID: 14745236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Regulation of skeletal ryanodine receptor by calcium].
    Han HM; Yin CC
    Sheng Li Ke Xue Jin Zhan; 2006 Apr; 37(2):132-5. PubMed ID: 16850618
    [No Abstract]   [Full Text] [Related]  

  • 7. Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle.
    Liu Y; Shen T; Randall WR; Schneider MF
    J Muscle Res Cell Motil; 2005; 26(1):13-21. PubMed ID: 16096682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+-induced Ca2+ release: physiological experiments on a new level.
    Wier WG
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):645. PubMed ID: 9518720
    [No Abstract]   [Full Text] [Related]  

  • 9. A purinergic signal transduction pathway in mammalian skeletal muscle cells in culture.
    Cseri J; Szappanos H; Szigeti GP; Csernátony Z; Kovács L; Csernoch L
    Pflugers Arch; 2002 Mar; 443(5-6):731-8. PubMed ID: 11889570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium transients in intact rat skeletal muscle fibers in agarose gel.
    Carroll SL; Klein MG; Schneider MF
    Am J Physiol; 1995 Jul; 269(1 Pt 1):C28-34. PubMed ID: 7631756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sarcoplasmic reticulum (SR) calcium content on SR calcium release elicited by small voltage-clamp depolarizations in frog cut skeletal muscle fibers equilibrated with 20 mM EGTA.
    Pape PC; Carrier N
    J Gen Physiol; 1998 Aug; 112(2):161-79. PubMed ID: 9689025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ sparks as a plastic signal for skeletal muscle health, aging, and dystrophy.
    Weisleder N; Ma JJ
    Acta Pharmacol Sin; 2006 Jul; 27(7):791-8. PubMed ID: 16787561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The giant protein titin as an integrator of myocyte signaling pathways.
    Linke WA; Krüger M
    Physiology (Bethesda); 2010 Jun; 25(3):186-98. PubMed ID: 20551232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slowed relaxation in fatigued skeletal muscle fibers of Xenopus and Mouse. Contribution of [Ca2+]i and cross-bridges.
    Westerblad H; Lännergren J; Allen DG
    J Gen Physiol; 1997 Mar; 109(3):385-99. PubMed ID: 9089444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in Guinea-pig cardiac myocytes.
    Lipp P; Niggli E
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):801-9. PubMed ID: 9518734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay of troponin- and Myosin-based pathways of calcium activation in skeletal and cardiac muscle: the use of W7 as an inhibitor of thin filament activation.
    Adhikari BB; Wang K
    Biophys J; 2004 Jan; 86(1 Pt 1):359-70. PubMed ID: 14695278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia stimulates via separate pathways ERK phosphorylation and NF-kappaB activation in skeletal muscle cells in primary culture.
    Osorio-Fuentealba C; Valdés JA; Riquelme D; Hidalgo J; Hidalgo C; Carrasco MA
    J Appl Physiol (1985); 2009 Apr; 106(4):1301-10. PubMed ID: 19179647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle fiber type: influence on contractile and metabolic properties.
    Zierath JR; Hawley JA
    PLoS Biol; 2004 Oct; 2(10):e348. PubMed ID: 15486583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient loss of voltage control of Ca2+ release in the presence of maurocalcine in skeletal muscle.
    Pouvreau S; Csernoch L; Allard B; Sabatier JM; De Waard M; Ronjat M; Jacquemond V
    Biophys J; 2006 Sep; 91(6):2206-15. PubMed ID: 16782801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myosin regulatory light chain modulates the Ca2+ dependence of the kinetics of tension development in skeletal muscle fibers.
    Patel JR; Diffee GM; Moss RL
    Biophys J; 1996 May; 70(5):2333-40. PubMed ID: 9172757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.