BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 9234512)

  • 1. Origins and functions of the chlamydial inclusion.
    Hackstadt T; Fischer ER; Scidmore MA; Rockey DD; Heinzen RA
    Trends Microbiol; 1997 Jul; 5(7):288-93. PubMed ID: 9234512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.
    Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA
    EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chlamydial inclusion: escape from the endocytic pathway.
    Fields KA; Hackstadt T
    Annu Rev Cell Dev Biol; 2002; 18():221-45. PubMed ID: 12142274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry.
    Scidmore MA; Rockey DD; Fischer ER; Heinzen RA; Hackstadt T
    Infect Immun; 1996 Dec; 64(12):5366-72. PubMed ID: 8945589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion.
    Hackstadt T; Scidmore-Carlson MA; Shaw EI; Fischer ER
    Cell Microbiol; 1999 Sep; 1(2):119-30. PubMed ID: 11207546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection.
    Scidmore MA; Fischer ER; Hackstadt T
    Infect Immun; 2003 Feb; 71(2):973-84. PubMed ID: 12540580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis.
    Beatty WL
    J Cell Sci; 2006 Jan; 119(Pt 2):350-9. PubMed ID: 16410552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane.
    Moore ER; Mead DJ; Dooley CA; Sager J; Hackstadt T
    Microbiology (Reading); 2011 Mar; 157(Pt 3):830-838. PubMed ID: 21109560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner.
    Rzomp KA; Scholtes LD; Briggs BJ; Whittaker GR; Scidmore MA
    Infect Immun; 2003 Oct; 71(10):5855-70. PubMed ID: 14500507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins.
    Scidmore-Carlson MA; Shaw EI; Dooley CA; Fischer ER; Hackstadt T
    Mol Microbiol; 1999 Aug; 33(4):753-65. PubMed ID: 10447885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Early events in chlamydial infection of host cells].
    Israeli E; Friedman M
    Harefuah; 2004 Sep; 143(9):669-75, 693. PubMed ID: 15521684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chlamydial inclusion membrane as an engine of survival.
    Moulder JW
    Trends Microbiol; 1997 Aug; 5(8):305-6. PubMed ID: 9263406
    [No Abstract]   [Full Text] [Related]  

  • 13. Association of caveolin with Chlamydia trachomatis inclusions at early and late stages of infection.
    Norkin LC; Wolfrom SA; Stuart ES
    Exp Cell Res; 2001 Jun; 266(2):229-38. PubMed ID: 11399051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysosome repair enables host cell survival and bacterial persistence following Chlamydia trachomatis infection.
    Beatty WL
    Cell Microbiol; 2007 Sep; 9(9):2141-52. PubMed ID: 17451410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hypothetical protein CT813 is localized in the Chlamydia trachomatis inclusion membrane and is immunogenic in women urogenitally infected with C. trachomatis.
    Chen C; Chen D; Sharma J; Cheng W; Zhong Y; Liu K; Jensen J; Shain R; Arulanandam B; Zhong G
    Infect Immun; 2006 Aug; 74(8):4826-40. PubMed ID: 16861671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: mechanisms of endocytosis.
    Ward ME; Murray A
    J Gen Microbiol; 1984 Jul; 130(7):1765-80. PubMed ID: 6470672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis.
    Muschiol S; Bailey L; Gylfe A; Sundin C; Hultenby K; Bergström S; Elofsson M; Wolf-Watz H; Normark S; Henriques-Normark B
    Proc Natl Acad Sci U S A; 2006 Sep; 103(39):14566-71. PubMed ID: 16973741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inclusion biogenesis and reactivation of persistent Chlamydia trachomatis requires host cell sphingolipid biosynthesis.
    Robertson DK; Gu L; Rowe RK; Beatty WL
    PLoS Pathog; 2009 Nov; 5(11):e1000664. PubMed ID: 19936056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Late endocytic multivesicular bodies intersect the chlamydial inclusion in the absence of CD63.
    Beatty WL
    Infect Immun; 2008 Jul; 76(7):2872-81. PubMed ID: 18426873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Premature apoptosis of Chlamydia-infected cells disrupts chlamydial development.
    Ying S; Pettengill M; Latham ER; Walch A; Ojcius DM; Häcker G
    J Infect Dis; 2008 Nov; 198(10):1536-44. PubMed ID: 18821848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.