BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 9234708)

  • 1. Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signaling.
    Diaz B; Barnard D; Filson A; MacDonald S; King A; Marshall M
    Mol Cell Biol; 1997 Aug; 17(8):4509-16. PubMed ID: 9234708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative regulation of Raf-1 by phosphorylation of serine 621.
    Mischak H; Seitz T; Janosch P; Eulitz M; Steen H; Schellerer M; Philipp A; Kolch W
    Mol Cell Biol; 1996 Oct; 16(10):5409-18. PubMed ID: 8816453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation site specificity of the Pak-mediated regulation of Raf-1 and cooperativity with Src.
    King AJ; Wireman RS; Hamilton M; Marshall MS
    FEBS Lett; 2001 May; 497(1):6-14. PubMed ID: 11376654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation.
    Mason CS; Springer CJ; Cooper RG; Superti-Furga G; Marshall CJ; Marais R
    EMBO J; 1999 Apr; 18(8):2137-48. PubMed ID: 10205168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation.
    Marais R; Light Y; Paterson HF; Marshall CJ
    EMBO J; 1995 Jul; 14(13):3136-45. PubMed ID: 7542586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Raf-1 and Raf-1 mutants by Ras-dependent and Ras-independent mechanisms in vitro.
    Dent P; Reardon DB; Morrison DK; Sturgill TW
    Mol Cell Biol; 1995 Aug; 15(8):4125-35. PubMed ID: 7623807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of the Raf-1-MEK-ERK signal transduction pathway in vitro.
    Macdonald SG; Crews CM; Wu L; Driller J; Clark R; Erikson RL; McCormick F
    Mol Cell Biol; 1993 Nov; 13(11):6615-20. PubMed ID: 8413257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association.
    Yip-Schneider MT; Miao W; Lin A; Barnard DS; Tzivion G; Marshall MS
    Biochem J; 2000 Oct; 351(Pt 1):151-9. PubMed ID: 10998357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601.
    Zhang BH; Guan KL
    EMBO J; 2000 Oct; 19(20):5429-39. PubMed ID: 11032810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxic activation of nuclear factor-kappa B is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2).
    Koong AC; Chen EY; Mivechi NF; Denko NC; Stambrook P; Giaccia AJ
    Cancer Res; 1994 Oct; 54(20):5273-9. PubMed ID: 7923153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues.
    Zheng CF; Guan KL
    EMBO J; 1994 Mar; 13(5):1123-31. PubMed ID: 8131746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ras-induced activation of Raf-1 is dependent on tyrosine phosphorylation.
    Jelinek T; Dent P; Sturgill TW; Weber MJ
    Mol Cell Biol; 1996 Mar; 16(3):1027-34. PubMed ID: 8622647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S338 phosphorylation of Raf-1 is independent of phosphatidylinositol 3-kinase and Pak3.
    Chiloeches A; Mason CS; Marais R
    Mol Cell Biol; 2001 Apr; 21(7):2423-34. PubMed ID: 11259591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between Ras and Raf: key regulatory proteins in cellular transformation.
    Marshall M
    Mol Reprod Dev; 1995 Dec; 42(4):493-9. PubMed ID: 8607981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylates Raf-1 at serine 338 and mediates Ras-stimulated Raf-1 activation.
    Salzano M; Rusciano MR; Russo E; Bifulco M; Postiglione L; Vitale M
    Cell Cycle; 2012 Jun; 11(11):2100-6. PubMed ID: 22592532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338.
    King AJ; Sun H; Diaz B; Barnard D; Miao W; Bagrodia S; Marshall MS
    Nature; 1998 Nov; 396(6707):180-3. PubMed ID: 9823899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical binding and regulatory interactions between Ras and Raf occur through a small, stable N-terminal domain of Raf and specific Ras effector residues.
    Chuang E; Barnard D; Hettich L; Zhang XF; Avruch J; Marshall MS
    Mol Cell Biol; 1994 Aug; 14(8):5318-25. PubMed ID: 8035810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A proline-rich sequence unique to MEK1 and MEK2 is required for raf binding and regulates MEK function.
    Catling AD; Schaeffer HJ; Reuter CW; Reddy GR; Weber MJ
    Mol Cell Biol; 1995 Oct; 15(10):5214-25. PubMed ID: 7565670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of 2 serine residues of MEK-1 that are differentially phosphorylated during activation by raf and MEK kinase.
    Yan M; Templeton DJ
    J Biol Chem; 1994 Jul; 269(29):19067-73. PubMed ID: 8034665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intact Raf zinc finger is required for optimal binding to processed Ras and for ras-dependent Raf activation in situ.
    Luo Z; Diaz B; Marshall MS; Avruch J
    Mol Cell Biol; 1997 Jan; 17(1):46-53. PubMed ID: 8972184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.