These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 9234963)

  • 1. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions.
    Franzini-Armstrong C; Protasi F
    Physiol Rev; 1997 Jul; 77(3):699-729. PubMed ID: 9234963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative ultrastructure of Ca2+ release units in skeletal and cardiac muscle.
    Franzini-Armstrong C; Protasi F; Ramesh V
    Ann N Y Acad Sci; 1998 Sep; 853():20-30. PubMed ID: 10603933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dihydropyridine receptor-ryanodine receptor interactions in skeletal muscle excitation-contraction coupling.
    Meissner G; Lu X
    Biosci Rep; 1995 Oct; 15(5):399-408. PubMed ID: 8825041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle.
    Sun XH; Protasi F; Takahashi M; Takeshima H; Ferguson DG; Franzini-Armstrong C
    J Cell Biol; 1995 May; 129(3):659-71. PubMed ID: 7730402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling.
    Takekura H; Takeshima H; Nishimura S; Takahashi M; Tanabe T; Flockerzi V; Hofmann F; Franzini-Armstrong C
    J Muscle Res Cell Motil; 1995 Oct; 16(5):465-80. PubMed ID: 8567934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling.
    Brillantes AM; Bezprozvannaya S; Marks AR
    Circ Res; 1994 Sep; 75(3):503-10. PubMed ID: 8062423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloride-dependent sarcoplasmic reticulum Ca2+ release correlates with increased Ca2+ activation of ryanodine receptors.
    Fruen BR; Kane PK; Mickelson JR; Louis CF
    Biophys J; 1996 Nov; 71(5):2522-30. PubMed ID: 8913591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoplasmic Ca2+ does not inhibit the cardiac muscle sarcoplasmic reticulum ryanodine receptor Ca2+ channel, although Ca(2+)-induced Ca2+ inactivation of Ca2+ release is observed in native vesicles.
    Chu A; Fill M; Stefani E; Entman ML
    J Membr Biol; 1993 Jul; 135(1):49-59. PubMed ID: 8411131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle.
    Flucher BE; Franzini-Armstrong C
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):8101-6. PubMed ID: 8755610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional nonequality of the cardiac and skeletal ryanodine receptors.
    Nakai J; Ogura T; Protasi F; Franzini-Armstrong C; Allen PD; Beam KG
    Proc Natl Acad Sci U S A; 1997 Feb; 94(3):1019-22. PubMed ID: 9023375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology and molecular composition of sarcoplasmic reticulum surface junctions in the absence of DHPR and RyR in mouse skeletal muscle.
    Felder E; Protasi F; Hirsch R; Franzini-Armstrong C; Allen PD
    Biophys J; 2002 Jun; 82(6):3144-9. PubMed ID: 12023238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinated incorporation of skeletal muscle dihydropyridine receptors and ryanodine receptors in peripheral couplings of BC3H1 cells.
    Protasi F; Franzini-Armstrong C; Flucher BE
    J Cell Biol; 1997 May; 137(4):859-70. PubMed ID: 9151688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the sarcoplasmic reticulum proteins in the thermogenic muscles of fish.
    Block BA; O'Brien J; Meissner G
    J Cell Biol; 1994 Dec; 127(5):1275-87. PubMed ID: 7962089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural interaction between RYRs and DHPRs in calcium release units of cardiac and skeletal muscle cells.
    Protasi F
    Front Biosci; 2002 Mar; 7():d650-8. PubMed ID: 11861217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function?
    Sutko JL; Airey JA
    Physiol Rev; 1996 Oct; 76(4):1027-71. PubMed ID: 8874493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional calcium release channel formed by the carboxyl-terminal portion of ryanodine receptor.
    Bhat MB; Zhao J; Takeshima H; Ma J
    Biophys J; 1997 Sep; 73(3):1329-36. PubMed ID: 9284301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular calcium-release channels: regulators of cell life and death.
    Marks AR
    Am J Physiol; 1997 Feb; 272(2 Pt 2):H597-605. PubMed ID: 9124414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological differences between the alpha and beta ryanodine receptors of fish skeletal muscle.
    O'Brien J; Valdivia HH; Block BA
    Biophys J; 1995 Feb; 68(2):471-82. PubMed ID: 7696500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle.
    Protasi F; Franzini-Armstrong C; Allen PD
    J Cell Biol; 1998 Feb; 140(4):831-42. PubMed ID: 9472035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro.
    Flucher BE; Andrews SB; Fleischer S; Marks AR; Caswell A; Powell JA
    J Cell Biol; 1993 Dec; 123(5):1161-74. PubMed ID: 8245124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.