These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 9234971)

  • 1. Comparing Mersilene* tape and stainless steel wire as sublaminar spinal fixation in the Chagma baboon (Papio ursinus).
    Grobler LJ; Gaines RW; Kempff PG
    Iowa Orthop J; 1997; 17():20-31. PubMed ID: 9234971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomechanical analysis of sublaminar and subtransverse process fixation using metal wires and polyethylene cables.
    Fujita M; Diab M; Xu Z; Puttlitz CM
    Spine (Phila Pa 1976); 2006 Sep; 31(19):2202-8. PubMed ID: 16946654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mersilene tapes as a substitute for wire in segmental spinal instrumentation for children.
    Gaines RW; Abernathie DL
    Spine (Phila Pa 1976); 1986 Nov; 11(9):907-13. PubMed ID: 3824068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biomechanical analysis of sublaminar wires and cables using luque segmental spinal instrumentation.
    Parsons JR; Chokshi BV; Lee CK; Gundlapalli RV; Stamer D
    Spine (Phila Pa 1976); 1997 Feb; 22(3):267-73. PubMed ID: 9051888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biomechanical study of 3 different types of sublaminar wire used for constructs in the thoracic spine.
    Murakami H; Yamazaki K; Attallah-Wasif ES; Tsai KJ; Shimamura T; Hutton WC
    J Spinal Disord Tech; 2006 Aug; 19(6):442-6. PubMed ID: 16891981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of thoracic and thoracolumbar fracture-dislocations with Harrington rods and sublaminar wires.
    Gaines RW; Breedlove RF; Munson G
    Clin Orthop Relat Res; 1984 Oct; (189):195-203. PubMed ID: 6478697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UHMWPE Sublaminar Wires in Posterior Spinal Instrumentation: Stability and Biocompatibility Assessment in an Ovine Pilot Study.
    Bogie R; Voss L; Arts JJ; Lataster A; Willems PC; Brans B; van Rhijn LW; Welting TJ
    Clin Spine Surg; 2016 Dec; 29(10):E542-E549. PubMed ID: 27879512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmental spinal instrumentation. A study of the mechanical properties of materials used for sublaminar fixation.
    Crawford RJ; Sell PJ; Ali MS; Dove J
    Spine (Phila Pa 1976); 1989 Jun; 14(6):632-5. PubMed ID: 2749380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pedicle screw augmentation with polyethylene tape: a biomechanical study in the osteoporotic thoracolumbar spine.
    Hamasaki T; Tanaka N; Kim J; Okada M; Ochi M; Hutton WC
    J Spinal Disord Tech; 2010 Apr; 23(2):127-32. PubMed ID: 20051920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of sublaminar cables to replace Luque wires.
    Songer MN; Spencer DL; Meyer PR; Jayaraman G
    Spine (Phila Pa 1976); 1991 Aug; 16(8 Suppl):S418-21. PubMed ID: 1785098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmental spinal instrumentation using short closed wire loops.
    Mehdian H; Eisenstein S
    Clin Orthop Relat Res; 1989 Oct; (247):90-6. PubMed ID: 2791399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Square-lashing technique in segmental spinal instrumentation: a biomechanical study.
    Arlet V; Draxinger K; Beckman L; Steffen T
    Eur Spine J; 2006 Jul; 15(7):1153-8. PubMed ID: 16470399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of corrosion in Harrington and Luque rods failure.
    Prikryl M; Srivastava SC; Viviani GR; Ives MB; Purdy GR
    Biomaterials; 1989 Mar; 10(2):109-17. PubMed ID: 2706297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cobalt chromium sublaminar wires for spinal deformity surgery.
    Cluck MW; Skaggs DL
    Spine (Phila Pa 1976); 2006 Sep; 31(19):2209-12. PubMed ID: 16946655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contoured Harrington instrumentation in the treatment of unstable spinal fractures. The effect of supplementary sublaminar wires.
    Akbarnia BA; Fogarty JP; Tayob AA
    Clin Orthop Relat Res; 1984 Oct; (189):186-94. PubMed ID: 6478696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of stainless steel and CP titanium rods for the anterior instrumentation of scoliosis.
    Haher T; Ottaviano D; Lapman P; Goldfarb B; Merola A; Valdevit A
    Biomed Mater Eng; 2004; 14(1):71-7. PubMed ID: 14757955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The simultaneous application of an interspinous compressive wire and Harrington distraction rods in the treatment of fracture-dislocation of the thoracic and lumbar spine.
    Floman Y; Fast A; Pollack D; Yosipovitch Z; Robin GC
    Clin Orthop Relat Res; 1986 Apr; (205):207-15. PubMed ID: 3698379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The selection of wires for sublaminar fixation.
    Boeree NR; Dove J
    Spine (Phila Pa 1976); 1993 Mar; 18(4):497-503. PubMed ID: 8470012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuropathologic changes with experimental spinal instrumentation: transpedicular versus sublaminar fixation.
    Zdeblick TA; Becker PS; McAfee PC; Sutterlin CE; Coe JD; Gurr KR
    J Spinal Disord; 1991 Jun; 4(2):221-8. PubMed ID: 1806087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The value of computed tomography in thoracolumbar fractures. An analysis of one hundred consecutive cases and a new classification.
    McAfee PC; Yuan HA; Fredrickson BE; Lubicky JP
    J Bone Joint Surg Am; 1983 Apr; 65(4):461-73. PubMed ID: 6833320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.