These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 9234992)

  • 1. Pressure-jump relaxation kinetics of a DNA triplex helix-coil equilibrium.
    Lin MC; Macgregor RB
    Biopolymers; 1997 Aug; 42(2):129-32. PubMed ID: 9234992
    [No Abstract]   [Full Text] [Related]  

  • 2. The activation volume of a DNA helix-coil transition.
    Lin MC; Macgregor RB
    Biochemistry; 1996 Sep; 35(36):11846-51. PubMed ID: 8794767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The change of activation energy in microchannel laminar flow as demonstrated by kinetic analysis of the DNA duplex-coil equilibrium.
    Yamashita K; Miyazaki M; Yamaguchi Y; Nakamura H; Maeda H
    Lab Chip; 2008 Jul; 8(7):1171-7. PubMed ID: 18584094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic, kinetic, and conformational properties of a parallel intermolecular DNA triplex containing 5' and 3' junctions.
    Asensio JL; Dosanjh HS; Jenkins TC; Lane AN
    Biochemistry; 1998 Oct; 37(43):15188-98. PubMed ID: 9790683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimolecular DNA triplexes: duplex extensions show implications for H-form DNA stability.
    Mundt AA; Crouch GJ; Eaton BE
    Biochemistry; 1997 Oct; 36(42):13004-9. PubMed ID: 9335561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bis-alkylating triplex forming oligonucleotide inhibits intracellular reporter gene expression and prevents triplex unwinding due to helicase activity.
    Ziemba AJ; Reed MW; Raney KD; Byrd AB; Ebbinghaus SW
    Biochemistry; 2003 May; 42(17):5013-24. PubMed ID: 12718544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel, double-helix DNA nanostructures using interstrand cross-linked oligonucleotides with bismaleimide linkers.
    Endo M; Majima T
    Angew Chem Int Ed Engl; 2003 Dec; 42(46):5744-7. PubMed ID: 14661212
    [No Abstract]   [Full Text] [Related]  

  • 8. Triple helix formation by (G,A)-containing oligonucleotides: asymmetric sequence effect.
    Arimondo PB; Barcelo F; Sun JS; Maurizot JC; Garestier T; Hélène C
    Biochemistry; 1998 Nov; 37(47):16627-35. PubMed ID: 9843430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification of pyrimidine TFOs: effect on i-motif and triple helix formation.
    Lacroix L; Mergny JL
    Arch Biochem Biophys; 2000 Sep; 381(1):153-63. PubMed ID: 11019831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triplex formation on DNA targets: how to choose the oligonucleotide.
    Vekhoff P; Ceccaldi A; Polverari D; Pylouster J; Pisano C; Arimondo PB
    Biochemistry; 2008 Nov; 47(47):12277-89. PubMed ID: 18954091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of purine motif DNA triplex by a tetrapeptide from the binding domain of HMGBI protein.
    Jain A; Akanchha S; Rajeswari MR
    Biochimie; 2005 Aug; 87(8):781-90. PubMed ID: 15885869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular recognition of quadruplex DNA by quinacridine derivatives.
    Teulade-Fichou MP; Hounsou C; Guittat L; Mergny JL; Alberti P; Carrasco C; Bailly C; Lehn JM; Wilson WD
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1483-5. PubMed ID: 14565448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triple helix formation and homologous strand exchange in pyrene-labeled oligonucleotides.
    Mohammadi S; Slama-Schwok A; Léger G; el Manouni D; Shchyolkina A; Leroux Y; Taillandier E
    Biochemistry; 1997 Dec; 36(48):14836-44. PubMed ID: 9398205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An oligonucleotide matrix hybridization approach to DNA sequencing.
    Khorlin AA; Khrapko KR; Ivanov IB; Lysov YuP ; Yershov GK; Vasilenko SK; Florentiev VL; Mirzabekov AD
    Nucleic Acids Symp Ser; 1991; (24):191-2. PubMed ID: 1841281
    [No Abstract]   [Full Text] [Related]  

  • 15. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and evaluation of oligonucleotides incorporating novel artificial nucleobases for the selective formation of non-natural type triplexes.
    Nakashima S; Matsuura N; Nagatsugi F; Maeda M; Sasaki S
    Nucleic Acids Symp Ser; 1997; (37):33-4. PubMed ID: 9585985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of triplex forming oligodeoxynucleotides incorporating abasic sites by 5-arylcytosine residues in duplex DNAs.
    Mizuta M; Banba J; Kanamori T; Ohkubo A; Sekine M; Seio K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):25-6. PubMed ID: 18029568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution conformation of an intramolecular DNA triplex containing a nonnucleotide linker: comparison with the DNA duplex.
    Bartley JP; Brown T; Lane AN
    Biochemistry; 1997 Nov; 36(47):14502-11. PubMed ID: 9398169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective chemical autoligation on a double-stranded DNA template.
    Herrlein MK; Letsinger RL
    Nucleic Acids Res; 1994 Nov; 22(23):5076-8. PubMed ID: 7800502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.