BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9234996)

  • 1. Binding of basic amphipathic peptides to neutral phospholipid membranes: a thermodynamic study applied to dansyl-labeled melittin and substance P analogues.
    Pérez-Payá E; Porcar I; Gómez CM; Pedrós J; Campos A; Abad C
    Biopolymers; 1997 Aug; 42(2):169-81. PubMed ID: 9234996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure.
    Wieprecht T; Beyermann M; Seelig J
    Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation.
    Wenk MR; Seelig J
    Biochemistry; 1998 Mar; 37(11):3909-16. PubMed ID: 9521712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of a fluorescent dansylcadaverine-substance P analogue to negatively charged phospholipid membranes.
    Gómez CM; Codoñer A; Campos A; Abad C
    Int J Biol Macromol; 2000 Jul; 27(4):291-9. PubMed ID: 10921856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin.
    Ladokhin AS; White SH
    J Mol Biol; 1999 Jan; 285(4):1363-9. PubMed ID: 9917380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics of pore formation induced by membrane active peptides.
    Lee MT; Chen FY; Huang HW
    Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II.
    Newman RA; Van Scyoc WS; Sorensen BR; Jaren OR; Shea MA
    Proteins; 2008 Jun; 71(4):1792-812. PubMed ID: 18175310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and thermodynamic aspects of the interaction between heparan sulfate and analogues of melittin.
    Gonçalves E; Kitas E; Seelig J
    Biochemistry; 2006 Mar; 45(9):3086-94. PubMed ID: 16503664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering.
    Su CJ; Wu SS; Jeng US; Lee MT; Su AC; Liao KF; Lin WY; Huang YS; Chen CY
    Biochim Biophys Acta; 2013 Feb; 1828(2):528-34. PubMed ID: 23123565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of electrostatic interactions in the membrane binding of melittin.
    Hall K; Lee TH; Aguilar MI
    J Mol Recognit; 2011; 24(1):108-18. PubMed ID: 21194121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function.
    Ghosh AK; Rukmini R; Chattopadhyay A
    Biochemistry; 1997 Nov; 36(47):14291-305. PubMed ID: 9398147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface.
    Voglino L; McIntosh TJ; Simon SA
    Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of a substance P agonist and of substance P antagonists with lipid membranes. A thermodynamic analysis.
    Seelig A
    Biochemistry; 1992 Mar; 31(11):2897-904. PubMed ID: 1372515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing melittin helix-coil equilibria in solutions and vesicles.
    Hartings MR; Gray HB; Winkler JR
    J Phys Chem B; 2008 Mar; 112(10):3202-7. PubMed ID: 18288832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ionic strength on folding and aggregation of the hemolytic peptide melittin in solution.
    Raghuraman H; Chattopadhyay A
    Biopolymers; 2006 Oct; 83(2):111-21. PubMed ID: 16680713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.