BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 9235991)

  • 1. Reductive half-reaction of thioredoxin reductase from Escherichia coli.
    Lennon BW; Williams CH
    Biochemistry; 1997 Aug; 36(31):9464-77. PubMed ID: 9235991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
    Waksman G; Krishna TS; Williams CH; Kuriyan J
    J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-monitored turnover of Escherichia coli thioredoxin reductase: insights for catalysis.
    Lennon BW; Williams CH
    Biochemistry; 1996 Apr; 35(15):4704-12. PubMed ID: 8664260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stable mixed disulfide between thioredoxin reductase and its substrate, thioredoxin: preparation and characterization.
    Wang PF; Veine DM; Ahn SH; Williams CH
    Biochemistry; 1996 Apr; 35(15):4812-9. PubMed ID: 8664271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase.
    Knight K; Scrutton NS
    Biochem J; 2002 Oct; 367(Pt 1):19-30. PubMed ID: 12079493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thioredoxin reductase from Plasmodium falciparum: evidence for interaction between the C-terminal cysteine residues and the active site disulfide-dithiol.
    Wang PF; Arscott LD; Gilberger TW; Müller S; Williams CH
    Biochemistry; 1999 Mar; 38(10):3187-96. PubMed ID: 10074374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic properties of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase.
    Axley MJ; Fairman R; Yanchunas J; Villafranca JJ; Robertson JG
    Biochemistry; 1997 Jan; 36(4):812-22. PubMed ID: 9020779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of Arabidopsis thaliana NADPH dependent thioredoxin reductase at 2.5 A resolution.
    Dai S; Saarinen M; Ramaswamy S; Meyer Y; Jacquot JP; Eklund H
    J Mol Biol; 1996 Dec; 264(5):1044-57. PubMed ID: 9000629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thioredoxin reductase-thioredoxin fusion enzyme from Mycobacterium leprae: comparison with the separately expressed thioredoxin reductase.
    Wang PF; Marcinkeviciene J; Williams CH; Blanchard JS
    Biochemistry; 1998 Nov; 37(46):16378-89. PubMed ID: 9819230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor.
    Lennon BW; Williams CH; Ludwig ML
    Protein Sci; 1999 Nov; 8(11):2366-79. PubMed ID: 10595539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for two conformational states of thioredoxin reductase from Escherichia coli: use of intrinsic and extrinsic quenchers of flavin fluorescence as probes to observe domain rotation.
    Mulrooney SB; Williams CH
    Protein Sci; 1997 Oct; 6(10):2188-95. PubMed ID: 9336841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of active site tyrosine residues in catalysis by human glutathione reductase.
    Krauth-Siegel RL; Arscott LD; Schönleben-Janas A; Schirmer RH; Williams CH
    Biochemistry; 1998 Oct; 37(40):13968-77. PubMed ID: 9760231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of proton-linked flavin conformational changes in p-hydroxybenzoate hydroxylase.
    Frederick KK; Palfey BA
    Biochemistry; 2005 Oct; 44(40):13304-14. PubMed ID: 16201756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution structures of oxidized and reduced thioredoxin reductase from Helicobacter pylori.
    Gustafsson TN; Sandalova T; Lu J; Holmgren A; Schneider G
    Acta Crystallogr D Biol Crystallogr; 2007 Jul; 63(Pt 7):833-43. PubMed ID: 17582174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein.
    Konas DW; Takaya N; Sharma M; Stuehr DJ
    Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.