These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9235997)

  • 1. The heptameric prepore of a staphylococcal alpha-hemolysin mutant in lipid bilayers imaged by atomic force microscopy.
    Fang Y; Cheley S; Bayley H; Yang J
    Biochemistry; 1997 Aug; 36(31):9518-22. PubMed ID: 9235997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heptameric structures of two alpha-hemolysin mutants imaged with in situ atomic force microscopy.
    Malghani MS; Fang Y; Cheley S; Bayley H; Yang J
    Microsc Res Tech; 1999 Mar; 44(5):353-6. PubMed ID: 10090210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Staphylococcal alpha-hemolysin can form hexamers in phospholipid bilayers.
    Czajkowsky DM; Sheng S; Shao Z
    J Mol Biol; 1998 Feb; 276(2):325-30. PubMed ID: 9512705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intermediate in the assembly of a pore-forming protein trapped with a genetically-engineered switch.
    Walker B; Braha O; Cheley S; Bayley H
    Chem Biol; 1995 Feb; 2(2):99-105. PubMed ID: 9383410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The internal cavity of the staphylococcal alpha-hemolysin pore accommodates approximately 175 exogenous amino acid residues.
    Jung Y; Cheley S; Braha O; Bayley H
    Biochemistry; 2005 Jun; 44(25):8919-29. PubMed ID: 15966717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arresting and releasing Staphylococcal alpha-hemolysin at intermediate stages of pore formation by engineered disulfide bonds.
    Kawate T; Gouaux E
    Protein Sci; 2003 May; 12(5):997-1006. PubMed ID: 12717022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of alpha-hemolysin on A431 cells leads to clustering of Caveolin-1.
    Vijayvargia R; Kaur S; Sangha N; Sahasrabuddhe AA; Surolia I; Shouche Y; Krishnasastry MV
    Biochem Biophys Res Commun; 2004 Nov; 324(3):1124-9. PubMed ID: 15485671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous oligomerization of a staphylococcal alpha-hemolysin conformationally constrained by removal of residues that form the transmembrane beta-barrel.
    Cheley S; Malghani MS; Song L; Hobaugh M; Gouaux JE; Yang J; Bayley H
    Protein Eng; 1997 Dec; 10(12):1433-43. PubMed ID: 9543005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological evidence for heptameric stoichiometry of ion channels formed by Staphylococcus aureus alpha-toxin in planar lipid bilayers.
    Krasilnikov OV; Merzlyak PG; Yuldasheva LN; Rodrigues CG; Bhakdi S; Valeva A
    Mol Microbiol; 2000 Sep; 37(6):1372-8. PubMed ID: 10998169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of individual protein channels in lipid bilayers suspended in nanopores.
    Studer A; Han X; Winkler FK; Tiefenauer LX
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):325-31. PubMed ID: 19576736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tertiary structural changes of the alpha-hemolysin from Staphylococcus aureus on association with liposome membranes.
    Bortoleto RK; de Oliveira AH; Ruller R; Arni RK; Ward RJ
    Arch Biochem Biophys; 1998 Mar; 351(1):47-52. PubMed ID: 9500849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids.
    Mou J; Yang J; Shao Z
    J Mol Biol; 1995 May; 248(3):507-12. PubMed ID: 7752220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes.
    Puntheeranurak T; Stroh C; Zhu R; Angsuthanasombat C; Hinterdorfer P
    Ultramicroscopy; 2005 Nov; 105(1-4):115-24. PubMed ID: 16125846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule electrophoresis of beta-hairpin peptides by electrical recordings and Langevin dynamics simulations.
    Goodrich CP; Kirmizialtin S; Huyghues-Despointes BM; Zhu A; Scholtz JM; Makarov DE; Movileanu L
    J Phys Chem B; 2007 Apr; 111(13):3332-5. PubMed ID: 17388500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore.
    Song L; Hobaugh MR; Shustak C; Cheley S; Bayley H; Gouaux JE
    Science; 1996 Dec; 274(5294):1859-66. PubMed ID: 8943190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-Methyl-2,4-pentanediol induces spontaneous assembly of staphylococcal α-hemolysin into heptameric pore structure.
    Tanaka Y; Hirano N; Kaneko J; Kamio Y; Yao M; Tanaka I
    Protein Sci; 2011 Feb; 20(2):448-56. PubMed ID: 21280135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AFM as a high-resolution imaging tool and a molecular bond force probe.
    Yang J
    Cell Biochem Biophys; 2004; 41(3):435-50. PubMed ID: 15509891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional protein pore with a "retro" transmembrane domain.
    Cheley S; Braha O; Lu X; Conlan S; Bayley H
    Protein Sci; 1999 Jun; 8(6):1257-67. PubMed ID: 10386875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the amino latch of staphylococcal alpha-hemolysin in pore formation: a co-operative interaction between the N terminus and position 217.
    Jayasinghe L; Miles G; Bayley H
    J Biol Chem; 2006 Jan; 281(4):2195-204. PubMed ID: 16227199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. γ-Hemolysin oligomeric structure and effect of its formation on supported lipid bilayers: an AFM investigation.
    Alessandrini A; Viero G; Dalla Serra M; Prévost G; Facci P
    Biochim Biophys Acta; 2013 Feb; 1828(2):405-11. PubMed ID: 23036932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.