BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9236299)

  • 1. Transformation of chlororesorcinol by the hydrocarbonoclastic yeasts Candida maltosa, Candida tropicalis, and Trichosporon oivide.
    Kurtz AM; Crow SA
    Curr Microbiol; 1997 Sep; 35(3):165-8. PubMed ID: 9236299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal biotransformation of short-chain n-alkylcycloalkanes.
    Schlüter R; Dallinger A; Kabisch J; Duldhardt I; Schauer F
    Appl Microbiol Biotechnol; 2019 May; 103(10):4137-4151. PubMed ID: 30941461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Easy and inexpensive diffusion tests for detecting the assimilation of aromatic compounds by yeast-like fungi. Part I. Assimilation of dihydroxyphenols.
    Kocwa-Haluch R
    Chemosphere; 1995 Jan; 30(2):209-13. PubMed ID: 7874469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of alkenes and ketones by Candida maltosa and related yeasts.
    Beier A; Hahn V; Bornscheuer UT; Schauer F
    AMB Express; 2014; 4():75. PubMed ID: 25309846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of amines by yeasts grown on 1-aminoalkanes or putrescine as the sole source of carbon, nitrogen and energy.
    Middlehoven WJ; Hoogkamer-Te Niet MC; De Laat WT; Weijers C; Bulder CJ
    Antonie Van Leeuwenhoek; 1986; 52(6):525-35. PubMed ID: 3813525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemoglobin differentially induces binding of Candida, Trichosporon, and Saccharomyces species to fibronectin.
    Rodrigues RG; Yan S; Walsh TJ; Roberts DD
    J Infect Dis; 1998 Aug; 178(2):497-502. PubMed ID: 9697732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of phenolic compounds by the yeast Candida tropicalis HP 15. I. Physiology of growth and substrate utilization.
    Krug M; Ziegler H; Straube G
    J Basic Microbiol; 1985; 25(2):103-10. PubMed ID: 4009428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monochloramination of resorcinol: mechanism and kinetic modeling.
    Cimetiere N; Dossier-Berne F; De Laat J
    Environ Sci Technol; 2009 Dec; 43(24):9380-5. PubMed ID: 20000532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and DNA characterization of Candida maltosa, a hydrocarbon-utilizing yeast.
    Meyer SA; Anderson K; Brown RE; Smith MT; Yarrow D; Mitchell G; Ahearn DG
    Arch Microbiol; 1975 Aug; 104(3):225-31. PubMed ID: 53037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous.
    Yaguchi A; Robinson A; Mihealsick E; Blenner M
    Microb Cell Fact; 2017 Nov; 16(1):206. PubMed ID: 29149902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic modification of
    Chávez-Tinoco M; García-Ortega LF; Mancera E
    Microbiology (Reading); 2024 Mar; 170(3):. PubMed ID: 38456839
    [No Abstract]   [Full Text] [Related]  

  • 12. Cr(VI) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry.
    Ramírez-Ramírez R; Calvo-Méndez C; Avila-Rodríguez M; Lappe P; Ulloa M; Vázquez-Juárez R; Gutiérrez-Corona JF
    Antonie Van Leeuwenhoek; 2004 Jan; 85(1):63-8. PubMed ID: 15028877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi.
    Casillas RP; Crow SA; Heinze TM; Deck J; Cerniglia CE
    J Ind Microbiol; 1996 Apr; 16(4):205-15. PubMed ID: 8652115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotransformation of zearalenone to zearalenol by Candida tropicalis.
    Palyusik M; Hagler WM; Horváth L; Mirocha CJ
    Acta Vet Acad Sci Hung; 1980; 28(2):159-66. PubMed ID: 6453514
    [No Abstract]   [Full Text] [Related]  

  • 15. In vivo evidence for non-universal usage of the codon CUG in Candida maltosa.
    Sugiyama H; Ohkuma M; Masuda Y; Park SM; Ohta A; Takagi M
    Yeast; 1995 Jan; 11(1):43-52. PubMed ID: 7762300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An emerging issue of mixed yeast cultures.
    Yang YL; Chu WL; Lin CC; Tsai SH; Chang TP; Lo HJ
    J Microbiol Immunol Infect; 2014 Aug; 47(4):339-44. PubMed ID: 23523053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of multiplex loop-mediated isothermal amplification assays to detect medically important yeasts in dairy products.
    Kasahara K; Ishikawa H; Sato S; Shimakawa Y; Watanabe K
    FEMS Microbiol Lett; 2014 Aug; 357(2):208-16. PubMed ID: 24965944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic identification of n-alkane assimilating Candida yeasts based on nucleotide divergence in the 59 end of LSU rDNA gene.
    Arie M; Matsuda H; Furuhashi K; Takagi M
    J Gen Appl Microbiol; 2000 Oct; 46(5):257-262. PubMed ID: 12483577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed cultures of different yeasts species and yeasts with filamentous fungi in the SCP production. I. Production of single cell protein by mixed cultures Candida lipolytica and Candida tropicalis.
    Achremowicz B; Kosikowski FV; Masuyama K
    Acta Microbiol Pol; 1977; 26(3):265-71. PubMed ID: 70971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in cell wall structure and protein set in Candida maltosa grown on hexadecane.
    Zvonarev A; Farofonova V; Kulakovskaya E; Kulakovskaya T; Machulin A; Sokolov S; Dmitriev V
    Folia Microbiol (Praha); 2021 Apr; 66(2):247-253. PubMed ID: 33247329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.