BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9236301)

  • 1. Glucose and galactose transport in Bifidobacterium bifidum DSM 20082.
    Krzewinski F; Brassart C; Gavini F; Bouquelet S
    Curr Microbiol; 1997 Sep; 35(3):175-9. PubMed ID: 9236301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the lactose transport system in the strain Bifidobacterium bifidum DSM 20082.
    Krzewinski F; Brassart C; Gavini F; Bouquelet S
    Curr Microbiol; 1996 Jun; 32(6):301-7. PubMed ID: 8640105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and metabolism of glucose and arabinose in Bifidobacterium breve.
    Degnan BA; Macfarlane GT
    Arch Microbiol; 1993; 160(2):144-51. PubMed ID: 8216508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of a Na+/galactose (glucose) symport system in Vibrio parahaemolyticus.
    Sarker RI; Ogawa W; Tsuda M; Tanaka S; Tsuchiya T
    Biochim Biophys Acta; 1996 Mar; 1279(2):149-56. PubMed ID: 8603081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of carbohydrate substrate preferences in eight species of bifidobacteria.
    Degnan BA; Macfarlane GT
    FEMS Microbiol Lett; 1991 Nov; 68(2):151-6. PubMed ID: 1778437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous uptake of galactose and glucose by Azotobacter vinelandii.
    Wong TY; Murdock CA; Concannon SP; Lockey TD
    Biochem Cell Biol; 1991; 69(10-11):711-4. PubMed ID: 1799437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and metabolism of Bifidobacterium adolescentis MB 239 growing on glucose, galactose, lactose, and galactooligosaccharides.
    Amaretti A; Bernardi T; Tamburini E; Zanoni S; Lomma M; Matteuzzi D; Rossi M
    Appl Environ Microbiol; 2007 Jun; 73(11):3637-44. PubMed ID: 17434997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glucose-galactose paradox in neonatal murine hepatic glycogen synthesis.
    Kunst C; Kliegman R; Trindade C
    Am J Physiol; 1989 Nov; 257(5 Pt 1):E697-703. PubMed ID: 2596598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics analysis of Bifidobacterium longum NCC2705 growing on glucose, fructose, mannose, xylose, ribose, and galactose.
    Liu D; Wang S; Xu B; Guo Y; Zhao J; Liu W; Sun Z; Shao C; Wei X; Jiang Z; Wang X; Liu F; Wang J; Huang L; Hu D; He X; Riedel CU; Yuan J
    Proteomics; 2011 Jul; 11(13):2628-38. PubMed ID: 21630463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatidylglycerol as biosynthetic precursor for the poly(glycerol phosphate) backbone of bifidobacterial lipoteichoic acid.
    Op den Camp HJ; Oosterhof A; Veerkamp JH
    Biochem J; 1985 Jun; 228(3):683-8. PubMed ID: 4026803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the progression of vitamin A deficiency on glucose, galactose and mannose incorporation into sugar phosphates and sugar nucleotides in hamster liver.
    Shankar S; Creek KE; De Luca LM
    J Nutr; 1990 Apr; 120(4):361-74. PubMed ID: 1691776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of carbohydrate fraction in carbonated fermented milks as affected by beta-galactosidase activity of starter strains.
    Guetmonde M; Nieves C; Vinderola G; Reinheimer J; de los Reyes-Gavilan CG
    J Dairy Res; 2002 Feb; 69(1):125-37. PubMed ID: 12047103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modes of lactose uptake in the yeast species Kluyveromyces marxianus.
    Carvalho-Silva M; Spencer-Martins I
    Antonie Van Leeuwenhoek; 1990 Feb; 57(2):77-81. PubMed ID: 2321931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of D-galactose transport systems by luminal membrane vesicles from rabbit kidney.
    Røigaard-Petersen H; Jacobsen C; Sheikh MI
    Biochim Biophys Acta; 1986 Apr; 856(3):578-84. PubMed ID: 3964698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of erythrocyte lipid and of glucose and galactose concentration on transport of the sugars across a water-butanol interface.
    Moore TJ; Schlowsky B
    J Lipid Res; 1969 Mar; 10(2):216-9. PubMed ID: 5782359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncoupling of growth and acids production in Bifidobacterium ssp.
    Desjardins ML; Roy D; Toupin C; Goulet J
    J Dairy Sci; 1990 Jun; 73(6):1478-84. PubMed ID: 2384614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of glucose and galactose in kidney-cortex cells.
    Kleinzeller A; Kolínská J; Benes I
    Biochem J; 1967 Sep; 104(3):843-51. PubMed ID: 6049926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar transport systems of Bifidobacterium longum NCC2705.
    Parche S; Amon J; Jankovic I; Rezzonico E; Beleut M; Barutçu H; Schendel I; Eddy MP; Burkovski A; Arigoni F; Titgemeyer F
    J Mol Microbiol Biotechnol; 2007; 12(1-2):9-19. PubMed ID: 17183207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugar transport across the peritubular face of renal cells of the flounder.
    Kleinzeller A; McAvoy EM
    J Gen Physiol; 1973 Aug; 62(2):169-84. PubMed ID: 4722567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic characteristics and regulation of hexose transport in a galactokinase-negative Chinese hamster fibroblast cell line: a good model for studies on sugar transport in cultured mammalian cells.
    Germinario RJ; Lakshmi TM; Thirion JP
    J Cell Physiol; 1989 Feb; 138(2):300-4. PubMed ID: 2918031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.