These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 923683)

  • 1. Morphine-induced and stimulation-produced analgesias at coincident periaqueductal central gray loci: evaluation of analgesic congruence, tolerance, and cross-tolerance.
    Lewis VA; Gebhart GF
    Exp Neurol; 1977 Dec; 57(3):934-55. PubMed ID: 923683
    [No Abstract]   [Full Text] [Related]  

  • 2. The periaqueductal gray: site of morphine analgesia and tolerance as shown by 2-way cross tolerance between systemic and intracerebral injections.
    Jacquet YF; Lajtha A
    Brain Res; 1976 Feb; 103(3):501-13. PubMed ID: 1252940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the periaqueductal central gray (PAG) as a morphine-specific locus of action and examination of morphine-induced and stimulation-produced analgesia at coincident PAG loci.
    Lewis VA; Gebhart GF
    Brain Res; 1977 Mar; 124(2):283-303. PubMed ID: 191150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent disruptive effects of periaqueductal gray stimulation on development of morphine tolerance.
    Kesner RP; Priano DJ
    Behav Biol; 1977 Dec; 21(4):462-9. PubMed ID: 603472
    [No Abstract]   [Full Text] [Related]  

  • 5. Morphine analgesia: 2-way cross tolerance between systemic and intracerebral (periaqueductal gray) administrations.
    Jacquet YF; Lajtha A
    Life Sci; 1975 Oct; 17(8):1321-4. PubMed ID: 1196012
    [No Abstract]   [Full Text] [Related]  

  • 6. Analgesia and hyperreactivity produced by intracranial microinjections of morphine into the periaqueductal gray matter of the rat.
    Sharpe LG; Garnett JE; Cicero TJ
    Behav Biol; 1974 Jul; 11(3):303-13. PubMed ID: 4411999
    [No Abstract]   [Full Text] [Related]  

  • 7. Paradoxical effects after microinjection of morphine in the periaqueductal gray matter in the rat.
    Jacquet YF; Lajtha A
    Science; 1974 Sep; 185(4156):1055-7. PubMed ID: 4604871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of stimulation-produced analgesia in the cat.
    Gebhart GF; Toleikis JR
    Exp Neurol; 1978 Dec; 62(3):570-9. PubMed ID: 750210
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of focal electrical stimulation and morphine microinjection in the periaqueductal gray of the rat mesencephalon on neuronal activity in the medullary reticular formation.
    Mohrland JS; Gebhart GF
    Brain Res; 1980 Nov; 201(1):23-37. PubMed ID: 6251951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periaqueductal gray neurons response to microiontophoretically injected morphine in naive and morphine-dependent rats.
    Schurr A; Rigor BM; Ho BT; Dafny N
    Brain Res Bull; 1981 Jun; 6(6):473-8. PubMed ID: 6265040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic examination in the rat of brain sites sensitive to the direct application of morphine: observation of differential effects within the periaqueductal gray.
    Yaksh TL; Yeung JC; Rudy TA
    Brain Res; 1976 Sep; 114(1):83-103. PubMed ID: 963546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of periaqueductal grey matter and of spinal serotonergic pathways in morphine analgesia [proceedings].
    Deakin JF; Dostrovsky JO; Longden A
    J Physiol; 1978 Feb; 275():67P-68P. PubMed ID: 633166
    [No Abstract]   [Full Text] [Related]  

  • 13. [Changes in stimulation analgesia during chronic morphine administration].
    Morozova AS; Zvartau EE
    Farmakol Toksikol; 1985; 48(4):61-4. PubMed ID: 4043366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphine and ACTH1-24: correlative behavioral excitations following micro-injections in rat periaqueductal gray.
    Jacquet YF; Wolf G
    Brain Res; 1981 Aug; 219(1):214-8. PubMed ID: 6266601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lesions in nucleus reticularis gigantocellularis: effect on the antinociception produced by micro-injection of morphine and focal electrical stimulation in the periaqueductal gray matter.
    Mohrland JS; McManus DQ; Gebhart GF
    Brain Res; 1982 Jan; 231(1):143-52. PubMed ID: 6275945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periaqueductal gray matter involvement in the muscimol-induced decrease of morphine antinociception.
    Zambotti F; Zonta N; Parenti M; Tommasi R; Vicentini L; Conci F; Mantegazza P
    Naunyn Schmiedebergs Arch Pharmacol; 1982 Mar; 318(4):368-9. PubMed ID: 7078669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-serine in the midbrain periaqueductal gray contributes to morphine tolerance in rats.
    Cao S; Xiao Z; Sun M; Li Y
    Mol Pain; 2016; 12():. PubMed ID: 27175014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation-produced analgesia: development of tolerance and cross-tolerance to morphine.
    Mayer DJ; Hayes RL
    Science; 1975 May; 188(4191):941-3. PubMed ID: 1094537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analgesia produced by microinjection of baclofen and morphine at brain stem sites.
    Levy RA; Proudfit HK
    Eur J Pharmacol; 1979 Jul; 57(1):43-55. PubMed ID: 477741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analgetic effects of lanthanum: cross-tolerance with morphine.
    Harris RA; Iwamoto ET; Loh HH; Way EL
    Brain Res; 1975 Dec; 100(1):221-5. PubMed ID: 1182518
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.