These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 9236976)
1. Regulatory interaction between myogenic and shear-sensitive arterial segments: conditions for stable steady states. Harrigan TP Ann Biomed Eng; 1997; 25(4):635-43. PubMed ID: 9236976 [TBL] [Abstract][Full Text] [Related]
2. A nonlinear model for myogenic regulation of blood flow to bone: equilibrium states and stability characteristics. Harrigan TP Ann Biomed Eng; 1996; 24(2):211-21. PubMed ID: 8678353 [TBL] [Abstract][Full Text] [Related]
3. Effects of arterial wall stress on vasomotion. Koenigsberger M; Sauser R; Bény JL; Meister JJ Biophys J; 2006 Sep; 91(5):1663-74. PubMed ID: 16751242 [TBL] [Abstract][Full Text] [Related]
4. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis". Hewlin RL; Kizito JP Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548 [TBL] [Abstract][Full Text] [Related]
5. Control of blood vessel structure: insights from theoretical models. Pries AR; Secomb TW Am J Physiol Heart Circ Physiol; 2005 Mar; 288(3):H1010-5. PubMed ID: 15706037 [TBL] [Abstract][Full Text] [Related]
6. A theoretical investigation of low frequency diameter oscillations of muscular arteries. Achakri H; Rachev A; Stergiopulos N; Meister JJ Ann Biomed Eng; 1994; 22(3):253-63. PubMed ID: 7978546 [TBL] [Abstract][Full Text] [Related]
7. Concentration polarization of low density lipoproteins (LDL) in the arterial system. Fatouraee N; Deng X; De Champlain A; Guidoin R Ann N Y Acad Sci; 1998 Sep; 858():137-46. PubMed ID: 9917815 [TBL] [Abstract][Full Text] [Related]
8. Breaking symmetry in non-planar bifurcations: distribution of flow and wall shear stress. Lu Y; Lu X; Zhuang L; Wang W Biorheology; 2002; 39(3-4):431-6. PubMed ID: 12122263 [TBL] [Abstract][Full Text] [Related]
9. Heterogeneous perfusion is a consequence of uniform shear stress in optimized arterial tree models. Schreiner W; Karch R; Neumann M; Neumann F; Roedler SM; Heinze G J Theor Biol; 2003 Feb; 220(3):285-301. PubMed ID: 12468281 [TBL] [Abstract][Full Text] [Related]
10. Flow dynamics across end-to-end vascular bypass graft anastomoses. Kim YH; Chandran KB; Bower TJ; Corson JD Ann Biomed Eng; 1993; 21(4):311-20. PubMed ID: 8214816 [TBL] [Abstract][Full Text] [Related]
11. Shear stress is not sufficient to control growth of vascular networks: a model study. Hacking WJ; VanBavel E; Spaan JA Am J Physiol; 1996 Jan; 270(1 Pt 2):H364-75. PubMed ID: 8769773 [TBL] [Abstract][Full Text] [Related]
12. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model. Akbarzadeh P Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174 [TBL] [Abstract][Full Text] [Related]
13. Effect of exercise on hemodynamic conditions in the abdominal aorta. Taylor CA; Hughes TJ; Zarins CK J Vasc Surg; 1999 Jun; 29(6):1077-89. PubMed ID: 10359942 [TBL] [Abstract][Full Text] [Related]
14. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. Johnston BM; Johnston PR; Corney S; Kilpatrick D J Biomech; 2004 May; 37(5):709-20. PubMed ID: 15047000 [TBL] [Abstract][Full Text] [Related]
15. EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. Pohl U; Herlan K; Huang A; Bassenge E Am J Physiol; 1991 Dec; 261(6 Pt 2):H2016-23. PubMed ID: 1721502 [TBL] [Abstract][Full Text] [Related]
16. Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts. Giordana S; Sherwin SJ; Peiró J; Doorly DJ; Crane JS; Lee KE; Cheshire NJ; Caro CG J Biomech Eng; 2005 Dec; 127(7):1087-98. PubMed ID: 16502651 [TBL] [Abstract][Full Text] [Related]
17. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate. Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592 [TBL] [Abstract][Full Text] [Related]
18. Hemodynamics of a side-to-end proximal arterial anastomosis model. Ojha M; Cobbold RS; Johnston KW J Vasc Surg; 1993 Apr; 17(4):646-55. PubMed ID: 8464081 [TBL] [Abstract][Full Text] [Related]
19. Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. Rachev A J Biomech; 1997 Aug; 30(8):819-27. PubMed ID: 9239567 [TBL] [Abstract][Full Text] [Related]
20. New experiments on shear modulus of elasticity of arteries. Deng SX; Tomioka J; Debes JC; Fung YC Am J Physiol; 1994 Jan; 266(1 Pt 2):H1-10. PubMed ID: 8304490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]