These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 923699)

  • 1. Activity tests of alcohol dehydrogenases in wheat, rye and triticale.
    Leibenguth F
    Experientia; 1977 Nov; 33(11):1434-6. PubMed ID: 923699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transferability of SSR markers among wheat, rye, and triticale.
    Kuleung C; Baenziger PS; Dweikat I
    Theor Appl Genet; 2004 Apr; 108(6):1147-50. PubMed ID: 15067402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome merger: from sequence rearrangements in triticale to their elimination in wheat-rye addition lines.
    Bento M; Gustafson P; Viegas W; Silva M
    Theor Appl Genet; 2010 Aug; 121(3):489-97. PubMed ID: 20383487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mitochondrial atpA/atp9 co-transcript in wheat and triticale: RNA processing depends on the nuclear genotype.
    Laser B; Kück U
    Curr Genet; 1995 Dec; 29(1):50-7. PubMed ID: 8595658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and Sequencing of Chromosome Arm 7RS of Rye,
    Petereit J; Tay Fernandez C; Marsh JI; Bayer PE; Thomas WJW; Aliyeva AJ; Karafiátová M; Doležel J; Batley J; Edwards D
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular markers as a complementary tool in risk assessments: quantifying interspecific gene flow from triticale to spring wheat and durum wheat.
    Kavanagh VB; Hills MJ; Goyal A; Randhawa HS; Topinka AK; Eudes F; Hall LM
    Transgenic Res; 2013 Aug; 22(4):767-78. PubMed ID: 23389776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ileal starch digestibility of different cereal grains fed to growing pigs.
    Rosenfelder-Kuon P; Strang EJP; Spindler HK; Eklund M; Mosenthin R
    J Anim Sci; 2017 Jun; 95(6):2711-2717. PubMed ID: 28727064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parental and novel copies of the mitochondrial orf25 gene in the hybrid crop-plant triticale: predominant transcriptional expression of the maternal gene copy.
    Laser B; Mohr S; Odenbach W; Oettler G; Kück U
    Curr Genet; 1997 Nov; 32(5):337-47. PubMed ID: 9371885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyploidization-induced genome variation in triticale.
    Ma XF; Fang P; Gustafson JP
    Genome; 2004 Oct; 47(5):839-48. PubMed ID: 15499398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization and functional analysis of elite genes in wheat and its related species.
    Wang J; Qi P; Wei Y; Liu D; Fedak G; Zheng Y
    J Genet; 2010 Dec; 89(4):539-54. PubMed ID: 21273706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of rye genes not expressed in allohexaploid triticale.
    Khalil HB; Ehdaeivand MR; Xu Y; Laroche A; Gulick PJ
    BMC Genomics; 2015 Apr; 16(1):281. PubMed ID: 25886913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence organisation analysis of the wheat and rye genomes by interspecies DNA/DNA hybridisation.
    Rimpau J; Smith D; Flavell R
    J Mol Biol; 1978 Aug; 123(3):327-59. PubMed ID: 691051
    [No Abstract]   [Full Text] [Related]  

  • 13. Sources of wheat powdery mildew resistance from wheat-rye and wheat-Leymus hybrids.
    Forsström PO; Merker A
    Hereditas; 2001; 134(2):115-9. PubMed ID: 11732846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing and rate of genome variation in triticale following allopolyploidization.
    Ma XF; Gustafson JP
    Genome; 2006 Aug; 49(8):950-8. PubMed ID: 17036070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of wheat-Secale africanum chromosome 5R(a) derivatives carrying Secale specific genes for grain hardness.
    Li G; Gao D; La S; Wang H; Li J; He W; Yang E; Yang Z
    Planta; 2016 May; 243(5):1203-12. PubMed ID: 26883668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale.
    Marulanda JJ; Mi X; Melchinger AE; Xu JL; Würschum T; Longin CF
    Theor Appl Genet; 2016 Oct; 129(10):1901-13. PubMed ID: 27389871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and assessment of DArT markers in triticale.
    Badea A; Eudes F; Salmon D; Tuvesson S; Vrolijk A; Larsson CT; Caig V; Huttner E; Kilian A; Laroche A
    Theor Appl Genet; 2011 May; 122(8):1547-60. PubMed ID: 21394532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergent Development of Hexaploid Triticale by a Wheat - Rye -Psathyrostachys huashanica Trigeneric Hybrid Method.
    Kang H; Wang H; Huang J; Wang Y; Li D; Diao C; Zhu W; Tang Y; Wang Y; Fan X; Zeng J; Xu L; Sha L; Zhang H; Zhou Y
    PLoS One; 2016; 11(5):e0155667. PubMed ID: 27182983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression analysis of individual homoeologous wheat genome- and rye genome-specific transcripts in a 2BS.2RL wheat-rye translocation.
    Lee TG; Lee YJ; Seo YW
    Genes Genet Syst; 2014; 89(4):159-68. PubMed ID: 25747040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size matters in Triticeae polyploids: larger genomes have higher remodeling.
    Bento M; Gustafson JP; Viegas W; Silva M
    Genome; 2011 Mar; 54(3):175-83. PubMed ID: 21423280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.