These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Regional cerebral blood flow during a self-paced sequential finger opposition task in patients with cerebellar degeneration. Wessel K; Zeffiro T; Lou JS; Toro C; Hallett M Brain; 1995 Apr; 118 ( Pt 2)():379-93. PubMed ID: 7735880 [TBL] [Abstract][Full Text] [Related]
3. Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Jenkins IH; Jahanshahi M; Jueptner M; Passingham RE; Brooks DJ Brain; 2000 Jun; 123 ( Pt 6)():1216-28. PubMed ID: 10825359 [TBL] [Abstract][Full Text] [Related]
4. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Jahanshahi M; Jenkins IH; Brown RG; Marsden CD; Passingham RE; Brooks DJ Brain; 1995 Aug; 118 ( Pt 4)():913-33. PubMed ID: 7655888 [TBL] [Abstract][Full Text] [Related]
5. Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET. Boecker H; Dagher A; Ceballos-Baumann AO; Passingham RE; Samuel M; Friston KJ; Poline J; Dettmers C; Conrad B; Brooks DJ J Neurophysiol; 1998 Feb; 79(2):1070-80. PubMed ID: 9463462 [TBL] [Abstract][Full Text] [Related]
6. Changes in regional cerebral blood flow during self-paced arm and finger movements. A PET study. Kawashima R; Itoh H; Ono S; Satoh K; Furumoto S; Gotoh R; Koyama M; Yoshioka S; Takahashi T; Takahashi K; Yanagisawa T; Fukuda H Brain Res; 1996 Apr; 716(1-2):141-8. PubMed ID: 8738230 [TBL] [Abstract][Full Text] [Related]
7. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Gerloff C; Richard J; Hadley J; Schulman AE; Honda M; Hallett M Brain; 1998 Aug; 121 ( Pt 8)():1513-31. PubMed ID: 9712013 [TBL] [Abstract][Full Text] [Related]
8. Cortical representation of self-paced finger movement. Larsson J; Gulyás B; Roland PE Neuroreport; 1996 Jan; 7(2):463-8. PubMed ID: 8730806 [TBL] [Abstract][Full Text] [Related]
9. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. Winstein CJ; Grafton ST; Pohl PS J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621 [TBL] [Abstract][Full Text] [Related]
10. A positron emission tomography study of self-paced finger movements at different frequencies. Kawashima R; Inoue K; Sugiura M; Okada K; Ogawa A; Fukuda H Neuroscience; 1999; 92(1):107-12. PubMed ID: 10392834 [TBL] [Abstract][Full Text] [Related]
11. Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Shibasaki H; Sadato N; Lyshkow H; Yonekura Y; Honda M; Nagamine T; Suwazono S; Magata Y; Ikeda A; Miyazaki M Brain; 1993 Dec; 116 ( Pt 6)():1387-98. PubMed ID: 8293277 [TBL] [Abstract][Full Text] [Related]
12. Regional cerebral blood flow during voluntary arm and hand movements in human subjects. Colebatch JG; Deiber MP; Passingham RE; Friston KJ; Frackowiak RS J Neurophysiol; 1991 Jun; 65(6):1392-401. PubMed ID: 1875248 [TBL] [Abstract][Full Text] [Related]
13. Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. Sadato N; Yonekura Y; Waki A; Yamada H; Ishii Y J Neurosci; 1997 Dec; 17(24):9667-74. PubMed ID: 9391021 [TBL] [Abstract][Full Text] [Related]
14. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task. Rektor I; Sochůrková D; Bocková M Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240 [TBL] [Abstract][Full Text] [Related]
15. Regional cerebral blood flow changes in human brain related to ipsilateral and contralateral complex hand movements--a PET study. Kawashima R; Matsumura M; Sadato N; Naito E; Waki A; Nakamura S; Matsunami K; Fukuda H; Yonekura Y Eur J Neurosci; 1998 Jul; 10(7):2254-60. PubMed ID: 9749754 [TBL] [Abstract][Full Text] [Related]
16. Cerebral control of unimanual and bimanual movements: an H2(15)O PET study. Goerres GW; Samuel M; Jenkins IH; Brooks DJ Neuroreport; 1998 Nov; 9(16):3631-8. PubMed ID: 9858371 [TBL] [Abstract][Full Text] [Related]
17. Cerebral structures participating in motor preparation in humans: a positron emission tomography study. Deiber MP; Ibañez V; Sadato N; Hallett M J Neurophysiol; 1996 Jan; 75(1):233-47. PubMed ID: 8822554 [TBL] [Abstract][Full Text] [Related]
18. Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Kew JJ; Leigh PN; Playford ED; Passingham RE; Goldstein LH; Frackowiak RS; Brooks DJ Brain; 1993 Jun; 116 ( Pt 3)():655-80. PubMed ID: 8513396 [TBL] [Abstract][Full Text] [Related]
19. Frequency-dependent changes of regional cerebral blood flow during finger movements. Sadato N; Ibañez V; Deiber MP; Campbell G; Leonardo M; Hallett M J Cereb Blood Flow Metab; 1996 Jan; 16(1):23-33. PubMed ID: 8530552 [TBL] [Abstract][Full Text] [Related]
20. Statistical probability mapping reveals high-frequency magnetoencephalographic activity in supplementary motor area during self-paced finger movements. Kaiser J; Lutzenberger W; Preissl H; Mosshammer D; Birbaumer N Neurosci Lett; 2000 Mar; 283(1):81-4. PubMed ID: 10729639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]