These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 9238098)
41. Recent progress towards the application of hyperthermophiles and their enzymes. Atomi H Curr Opin Chem Biol; 2005 Apr; 9(2):166-73. PubMed ID: 15811801 [TBL] [Abstract][Full Text] [Related]
42. In vivo and in vitro protein imaging in thermophilic archaea by exploiting a novel protein tag. Visone V; Han W; Perugino G; Del Monaco G; She Q; Rossi M; Valenti A; Ciaramella M PLoS One; 2017; 12(10):e0185791. PubMed ID: 28973046 [TBL] [Abstract][Full Text] [Related]
43. Molecular biology of hyperthermophilic Archaea. van der Oost J; Ciaramella M; Moracci M; Pisani FM; Rossi M; de Vos WM Adv Biochem Eng Biotechnol; 1998; 61():87-115. PubMed ID: 9670798 [TBL] [Abstract][Full Text] [Related]
44. Chromosomal organization and nucleotide sequence of the genes for elongation factors EF-1 alpha and EF-2 and ribosomal proteins S7 and S10 of the hyperthermophilic archaeum Desulfurococcus mobilis. Ceccarelli E; Bocchetta M; Creti R; Sanangelantoni AM; Tiboni O; Cammarano P Mol Gen Genet; 1995 Mar; 246(6):687-96. PubMed ID: 7898436 [TBL] [Abstract][Full Text] [Related]
45. Industrial applications of hyperthermophilic enzymes: a review. de Miguel Bouzas T; Barros-Velázquez J; Villa TG Protein Pept Lett; 2006; 13(7):645-51. PubMed ID: 17018005 [TBL] [Abstract][Full Text] [Related]
46. The evolution of lipids. Itoh YH; Sugai A; Uda I; Itoh T Adv Space Res; 2001; 28(4):719-24. PubMed ID: 11803978 [TBL] [Abstract][Full Text] [Related]
47. Affinity of ribosomal protein S8 from mesophilic and (hyper)thermophilic archaea and bacteria for 16S rRNA correlates with the growth temperatures of the organisms. Gruber T; Köhrer C; Lung B; Shcherbakov D; Piendl W FEBS Lett; 2003 Aug; 549(1-3):123-8. PubMed ID: 12914937 [TBL] [Abstract][Full Text] [Related]
48. Expanding and understanding the genetic toolbox of the hyperthermophilic genus Sulfolobus. Wagner M; Berkner S; Ajon M; Driessen AJ; Lipps G; Albers SV Biochem Soc Trans; 2009 Feb; 37(Pt 1):97-101. PubMed ID: 19143610 [TBL] [Abstract][Full Text] [Related]
49. Sulfolobus genome: from genomics to biology. Charlebois RL; She Q; Sprott DP; Sensen CW; Garrett RA Curr Opin Microbiol; 1998 Oct; 1(5):584-8. PubMed ID: 10066534 [TBL] [Abstract][Full Text] [Related]
50. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Koonin EV; Mushegian AR; Galperin MY; Walker DR Mol Microbiol; 1997 Aug; 25(4):619-37. PubMed ID: 9379893 [TBL] [Abstract][Full Text] [Related]
51. Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus. Albers SV; Jonuscheit M; Dinkelaker S; Urich T; Kletzin A; Tampé R; Driessen AJ; Schleper C Appl Environ Microbiol; 2006 Jan; 72(1):102-11. PubMed ID: 16391031 [TBL] [Abstract][Full Text] [Related]
52. Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. Kletzin A; Adams MW J Bacteriol; 1996 Jan; 178(1):248-57. PubMed ID: 8550425 [TBL] [Abstract][Full Text] [Related]
53. Molecular cloning of the transcription factor TFIIB homolog from Sulfolobus shibatae. Qureshi SA; Khoo B; Baumann P; Jackson SP Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6077-81. PubMed ID: 7597084 [TBL] [Abstract][Full Text] [Related]
54. The linkage between reverse gyrase and hyperthermophiles: a review of their invariable association. Heine M; Chandra SB J Microbiol; 2009 Jun; 47(3):229-34. PubMed ID: 19557338 [TBL] [Abstract][Full Text] [Related]
55. Recurrent paralogy in the evolution of archaeal chaperonins. Archibald JM; Logsdon JM; Doolittle WF Curr Biol; 1999 Sep; 9(18):1053-6. PubMed ID: 10508614 [TBL] [Abstract][Full Text] [Related]
56. The hyperthermophilic archaebacterium, Pyrococcus furiosus. Development of culturing protocols, perspectives on scaleup, and potential applications. Blumentals II; Brown SH; Schicho RN; Skaja AK; Costantino HR; Kelly RM Ann N Y Acad Sci; 1990; 589():301-14. PubMed ID: 2113371 [TBL] [Abstract][Full Text] [Related]
58. Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron- cells of Sulfolobus acidocaldarius. Aagaard C; Dalgaard JZ; Garrett RA Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12285-9. PubMed ID: 8618886 [TBL] [Abstract][Full Text] [Related]
59. The glnA gene of the extremely thermophilic eubacterium Thermotoga maritima: cloning, primary structure, and expression in Escherichia coli. Sanangelantoni AM; Forlani G; Ambroselli F; Cammarano P; Tiboni O J Gen Microbiol; 1992 Feb; 138(2):383-93. PubMed ID: 1348781 [TBL] [Abstract][Full Text] [Related]
60. Stability and repair of DNA in hyperthermophilic Archaea. Grogan DW Curr Issues Mol Biol; 2004 Jul; 6(2):137-44. PubMed ID: 15119824 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]