These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 923828)

  • 1. Trypsin cleavage of ubiquinone-cytochrome c reductase (complex III).
    Ball MB; Bell RL; Capaldi RA
    FEBS Lett; 1977 Nov; 83(1):99-102. PubMed ID: 923828
    [No Abstract]   [Full Text] [Related]  

  • 2. Evidence for a function of core protein in complex III from beef-heart mitochondria.
    Gellerfors P; Lundén M; Nelson BD
    Eur J Biochem; 1976 Aug; 67(2):463-8. PubMed ID: 183953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nearest neighbor relationships of the polypeptides in ubiquinone cytochrome c reductase (complex III).
    Smith RJ; Capaldi RA
    Biochemistry; 1977 Jun; 16(12):2629-33. PubMed ID: 196617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of rate limitation by cytochrome c on the redox state of the ubiquinone pool in reconstituted NADH: cytochrome c reductase.
    Reed JS; Ragan CI
    Biochem J; 1987 Nov; 247(3):657-62. PubMed ID: 2827635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The small molecular mass ubiquinone-binding protein (QPc-9.5 kDa) in mitochondrial ubiquinol-cytochrome c reductase: isolation, ubiquinone-binding domain, and immunoinhibition.
    Usui S; Yu L; Yu CA
    Biochemistry; 1990 May; 29(19):4618-26. PubMed ID: 2164842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymology of ubiquinone-utilizing electron transfer complexes in nonionic detergent.
    Weiss H; Wingfield P
    Eur J Biochem; 1979 Aug; 99(1):151-60. PubMed ID: 226366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The involvement of NADH-cytochrome b5 reductase and cytochrome b5 complex in microsomal NADH-cytochrome c reductase activity. Changes in NADH-cytochrome c reductase activity following phenobarbital treatment.
    Starón K; Kaniuga Z
    Acta Biochim Pol; 1974; 21(1):61-6. PubMed ID: 4364831
    [No Abstract]   [Full Text] [Related]  

  • 8. Isolation of mitochondrial succinate: ubiquinone reductase, cytochrome c reductase and cytochrome c oxidase from Neurospora crassa using nonionic detergent.
    Weiss H; Kolb HJ
    Eur J Biochem; 1979 Aug; 99(1):139-49. PubMed ID: 226365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c reductases.
    Gwak SH; Yu L; Yu CA
    Biochemistry; 1986 Nov; 25(23):7675-82. PubMed ID: 3026458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution and reconstitution of succinate-cytochrome c reductase: preparations and properties of high purity succinate dehydrogenase and ubiquinol-cytochrome c reductase.
    Yu CA; Yu L
    Biochim Biophys Acta; 1980 Jul; 591(2):409-20. PubMed ID: 6249348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Solubilization and purification of the NADPH-cytochrome reductase from rat liver microsomes (author's transl)].
    Golf SW; Graef V; Staudinger H
    Hoppe Seylers Z Physiol Chem; 1974 Aug; 355(8):1063-9. PubMed ID: 4154900
    [No Abstract]   [Full Text] [Related]  

  • 13. An antimycin-insensitive succinate-cytochrome c reductase activity in pure reconstitutively active succinate dehydrogenase.
    Yu L; McCurley JP; Yu CA
    Biochim Biophys Acta; 1987 Aug; 893(1):75-82. PubMed ID: 3038186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium and disequilibrium in the ubiquinone-cytochrome b-c2 oxidoreductase or Rhodopseudomonas sphaeroides.
    Dutton PL; Prince RC
    FEBS Lett; 1978 Jul; 91(1):15-20. PubMed ID: 27385
    [No Abstract]   [Full Text] [Related]  

  • 15. The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Evidence for stoicheiometric association.
    Ragan CI; Heron C
    Biochem J; 1978 Sep; 174(3):783-90. PubMed ID: 215122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled digestion with trypsin as a structural probe for the N-terminal peptide of soluble and membranous cytochrome c.
    Trumpower BL; Katki A
    Biochemistry; 1975 Aug; 14(16):3635-42. PubMed ID: 169881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [One- and two-electron reduction of ubiquinone homologs by NADH- dehydrogenase preparations from the mitochondrial respiratory chain].
    Sled' VD; Zinich VN; Kotliar AB
    Biokhimiia; 1989 Sep; 54(9):1571-5. PubMed ID: 2590688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hematoporphyrin-promoted photoinactivation of mitochondrial ubiquinol-cytochrome c reductase: selective destruction of the histidine ligands of the iron-sulfur cluster and protective effect of ubiquinone.
    Miki T; Yu L; Yu CA
    Biochemistry; 1991 Jan; 30(1):230-8. PubMed ID: 1846289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin E and selenium deficiency induces expression of the ubiquinone-dependent antioxidant system at the plasma membrane.
    Navarro F; Navas P; Burgess JR; Bello RI; De Cabo R; Arroyo A; Villalba JM
    FASEB J; 1998 Dec; 12(15):1665-73. PubMed ID: 9837856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron flux through the mitochondrial ubiquinone.
    Gutman M
    Biochim Biophys Acta; 1980 Dec; 594(1):53-84. PubMed ID: 7006698
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.