These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 923908)

  • 1. Aspects of cutin structure and formation [proceedings].
    Holloway PJ
    Biochem Soc Trans; 1977; 5(5):1263-6. PubMed ID: 923908
    [No Abstract]   [Full Text] [Related]  

  • 2. Self-assembled polyhydroxy fatty acids vesicles: a mechanism for plant cutin synthesis.
    Heredia-Guerrero JA; Benítez JJ; Heredia A
    Bioessays; 2008 Mar; 30(3):273-7. PubMed ID: 18293369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer.
    Heredia A
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):1-7. PubMed ID: 12595066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in plasma membrane fluidity of Bryonia dioica internodes during thigmomorphogenesis.
    Mathieu C; Motta C; Hartmann MA; Thonat C; Boyer N
    Biochim Biophys Acta; 1995 May; 1235(2):249-55. PubMed ID: 7756332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of a hydroxy fatty acid polymer, cutin. Identification and biosynthesis of 16-oxo-9- or 10-hydroxypalmitic acid, a novel compound in Vicia faba.
    Kolattukudy PE
    Biochemistry; 1974 Mar; 13(7):1354-63. PubMed ID: 4819753
    [No Abstract]   [Full Text] [Related]  

  • 6. Thermal adaptation in yeasts: correlation of substrate transport with membrane lipid composition in psychrophilic and thermotolerant yeasts [proceedings].
    Watson K
    Biochem Soc Trans; 1978; 6(1):293-6. PubMed ID: 640197
    [No Abstract]   [Full Text] [Related]  

  • 7. CYP77A19 and CYP77A20 characterized from Solanum tuberosum oxidize fatty acids in vitro and partially restore the wild phenotype in an Arabidopsis thaliana cutin mutant.
    Grausem B; Widemann E; Verdier G; Nosbüsch D; Aubert Y; Beisson F; Schreiber L; Franke R; Pinot F
    Plant Cell Environ; 2014 Sep; 37(9):2102-15. PubMed ID: 24520956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria.
    Somerville C
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6215-8. PubMed ID: 7603974
    [No Abstract]   [Full Text] [Related]  

  • 9. The Plant Polyester Cutin: Biosynthesis, Structure, and Biological Roles.
    Fich EA; Segerson NA; Rose JK
    Annu Rev Plant Biol; 2016 Apr; 67():207-33. PubMed ID: 26865339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Genetically engineered enhancement of cold tolerance in plants].
    Murakami Y; Iba K
    Tanpakushitsu Kakusan Koso; 1999 Nov; 44(15 Suppl):2165-72. PubMed ID: 10586652
    [No Abstract]   [Full Text] [Related]  

  • 11. Adaptive changes in the lipids of higher-plant membranes.
    Harwood JL
    Biochem Soc Trans; 1983 Aug; 11(4):343-6. PubMed ID: 6617970
    [No Abstract]   [Full Text] [Related]  

  • 12. Trienoic fatty acids and plant tolerance of high temperature.
    Murakami Y; Tsuyama M; Kobayashi Y; Kodama H; Iba K
    Science; 2000 Jan; 287(5452):476-9. PubMed ID: 10642547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipids as determinants of cell function and human health. Proceedings of the 6th Congress of the International Society for the Study of Fatty Acids and Lipids (ISSFAL). Brighton, United Kingdom, 26 June-1 July 2004.
    Lipids; 2004 Nov; 39(11):1043-146. PubMed ID: 15912628
    [No Abstract]   [Full Text] [Related]  

  • 14. The modulation of cell-membrane fluidity by catalytic hydrogenation [proceedings].
    Quinn PJ; Chapman D; Vigo C; Boar BR
    Biochem Soc Trans; 1977; 5(4):1132-4. PubMed ID: 913804
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of cellular fatty acid alteration on hyperthermic sensitivity in cultured L1210 murine leukemia cells.
    Guffy MM; Rosenberger JA; Simon I; Burns CP
    Cancer Res; 1982 Sep; 42(9):3625-30. PubMed ID: 6213296
    [No Abstract]   [Full Text] [Related]  

  • 16. The biosynthesis of cutin and suberin as an alternative source of enzymes for the production of bio-based chemicals and materials.
    Li Y; Beisson F
    Biochimie; 2009 Jun; 91(6):685-91. PubMed ID: 19344744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the structures of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry.
    Walton TJ; Kolattukudy PE
    Biochemistry; 1972 May; 11(10):1885-96. PubMed ID: 5025631
    [No Abstract]   [Full Text] [Related]  

  • 18. Glycolipid function.
    Curatolo W
    Biochim Biophys Acta; 1987 Jun; 906(2):137-60. PubMed ID: 3036228
    [No Abstract]   [Full Text] [Related]  

  • 19. Building lipid barriers: biosynthesis of cutin and suberin.
    Pollard M; Beisson F; Li Y; Ohlrogge JB
    Trends Plant Sci; 2008 May; 13(5):236-46. PubMed ID: 18440267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chemical NJ15 affects hypocotyl elongation and shoot gravitropism via cutin polymerization.
    Jaroensanti-Tanaka N; Miyazaki S; Hosoi A; Tanaka K; Ito S; Iuchi S; Nakano T; Kobayashi M; Nakajima M; Asami T
    Biosci Biotechnol Biochem; 2018 Oct; 82(10):1770-1779. PubMed ID: 29912637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.