These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9239564)

  • 1. The effects of cement-stem debonding in THA on the long-term failure probability of cement.
    Verdonschot N; Huiskes R
    J Biomech; 1997 Aug; 30(8):795-802. PubMed ID: 9239564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical effects of stem cement interface characteristics in total hip replacement.
    Verdonschot N; Huiskes R
    Clin Orthop Relat Res; 1996 Aug; (329):326-36. PubMed ID: 8769468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface roughness of debonded straight-tapered stems in cemented THA reduces subsidence but not cement damage.
    Verdonschot N; Huiskes R
    Biomaterials; 1998 Oct; 19(19):1773-9. PubMed ID: 9856588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative FEA of the debonding process in different concepts of cemented hip implants.
    Pérez MA; García-Aznar JM; Doblaré M; Seral B; Seral F
    Med Eng Phys; 2006 Jul; 28(6):525-33. PubMed ID: 16257253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bond strength analysis of the bone cement- stem interface of hip arthroplasties.
    Zhang LF; Ge SR; Liu HT; Guo KJ; Han SY; Qi JY
    Asian Pac J Trop Med; 2014 Feb; 7(2):153-9. PubMed ID: 24461531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of prosthesis surface roughness on the failure process of cemented hip implants after stem-cement debonding.
    Verdonschot N; Tanck E; Huiskes R
    J Biomed Mater Res; 1998 Dec; 42(4):554-9. PubMed ID: 9827679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable partial debonding of the cement interfaces indicated by a finite element model of a total hip prosthesis.
    Lu Z; Ebramzadeh E; McKellop H; Sarmiento A
    J Orthop Res; 1996 Mar; 14(2):238-44. PubMed ID: 8648501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative finite element analysis of the debonding process in different concepts of cemented hip implants.
    Pérez MA; Palacios J
    Ann Biomed Eng; 2010 Jun; 38(6):2093-106. PubMed ID: 20232148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of stem geometry on mechanics of cemented femoral hip components with a proximal bond.
    Mann KA; Bartel DL; Ayers DC
    J Orthop Res; 1997 Sep; 15(5):700-6. PubMed ID: 9420599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cement debonding process of total hip arthroplasty stems.
    Verdonschot N; Huiskes R
    Clin Orthop Relat Res; 1997 Mar; (336):297-307. PubMed ID: 9060516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone creep and short and long term subsidence after cemented stem total hip arthroplasty (THA).
    Norman TL; Shultz T; Noble G; Gruen TA; Blaha JD
    J Biomech; 2013 Mar; 46(5):949-55. PubMed ID: 23357700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational assessment of the effect of polyethylene wear rate, mantle thickness, and porosity on the mechanical failure of the acetabular cement mantle.
    Coultrup OJ; Hunt C; Wroblewski BM; Taylor M
    J Orthop Res; 2010 May; 28(5):565-70. PubMed ID: 19950359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suboptimal (thin) distal cement mantle thickness as a contributory factor in total hip arthroplasty femoral component failure. A retrospective radiographic analysis favoring distal stem centralization.
    Star MJ; Colwell CW; Kelman GJ; Ballock RT; Walker RH
    J Arthroplasty; 1994 Apr; 9(2):143-9. PubMed ID: 8014645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of cement mantle thickness and stem geometry on fatigue damage in two different cemented hip femoral prostheses.
    Ramos A; Simões JA
    J Biomech; 2009 Nov; 42(15):2602-10. PubMed ID: 19660758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring the integrity of the cement-metal interface of total joint components in vitro using acoustic emission and ultrasound.
    Davies JP; Tse MK; Harris WH
    J Arthroplasty; 1996 Aug; 11(5):594-601. PubMed ID: 8872581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement of bone cement around prostheses by pre-coated wire coil: a finite element model study.
    Grosland N; Kim JK; Park JB
    Biomed Mater Eng; 1995; 5(1):29-36. PubMed ID: 7773144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional non-linear finite element study of the effect of cement-prosthesis debonding in cemented femoral total hip components.
    Harrigan TP; Harris WH
    J Biomech; 1991; 24(11):1047-58. PubMed ID: 1761581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fixation of the cemented femoral component. Effects of stem stiffness, cement thickness and roughness of the cement-bone surface.
    Ramaniraka NA; Rakotomanana LR; Leyvraz PF
    J Bone Joint Surg Br; 2000 Mar; 82(2):297-303. PubMed ID: 10755444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stem surface roughness alters creep induced subsidence and 'taper-lock' in a cemented femoral hip prosthesis.
    Norman TL; Thyagarajan G; Saligrama VC; Gruen TA; Blaha JD
    J Biomech; 2001 Oct; 34(10):1325-33. PubMed ID: 11522312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of stem geometry on stresses within the distal cement mantle in total hip replacement.
    Schmölz W; Gordon DR; Shields AJ; Kirkwood D; Grigoris P
    Technol Health Care; 2000; 8(1):67-73. PubMed ID: 10942992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.