These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 9239565)

  • 41. Motor unit recruitment and discharge behavior in movements and isometric contractions.
    Ivanova T; Garland SJ; Miller KJ
    Muscle Nerve; 1997 Jul; 20(7):867-74. PubMed ID: 9179159
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of elbow joint angles on electromyographic activity versus force relationships of synergistic muscles of the triceps brachii.
    Akima H; Maeda H; Koike T; Ishida K
    PLoS One; 2021; 16(6):e0252644. PubMed ID: 34081721
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of experimental and analytical torque-angle relationships of the human elbow joint complex.
    Hutchins EL; Gonzalez RV; Barr RE
    Biomed Sci Instrum; 1993; 29():17-24. PubMed ID: 8329588
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Muscular torque generation during imposed joint rotation: torque-angle relationships when subjects' only goal is to make a constant effort.
    Burgess PR; Jones LF; Buhler CF; Dewald JP; Zhang LQ; Rymer WZ
    Somatosens Mot Res; 2002; 19(4):327-40. PubMed ID: 12590834
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The utility of an empirically derived co-activation ratio for muscle force prediction through optimization.
    Brookham RL; Middlebrook EE; Grewal TJ; Dickerson CR
    J Biomech; 2011 May; 44(8):1582-7. PubMed ID: 21420090
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of biceps brachii and brachioradialis for the control of elbow flexion and extension movements.
    von Werder SC; Disselhorst-Klug C
    J Electromyogr Kinesiol; 2016 Jun; 28():67-75. PubMed ID: 27061680
    [TBL] [Abstract][Full Text] [Related]  

  • 48. HD-sEMG-based research on activation heterogeneity of skeletal muscles and the joint force estimation during elbow flexion.
    Zhang C; Chen X; Cao S; Zhang X; Chen X
    J Neural Eng; 2018 Oct; 15(5):056027. PubMed ID: 30010094
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Response of arm flexor muscles to magnetic and electrical brain stimulation during shortening and lengthening tasks in man.
    Abbruzzese G; Morena M; Spadavecchia L; Schieppati M
    J Physiol; 1994 Dec; 481 ( Pt 2)(Pt 2):499-507. PubMed ID: 7738841
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Continuous monitoring of sonomyography, electromyography and torque generated by normal upper arm muscles during isometric contraction: sonomyography assessment for arm muscles.
    Shi J; Zheng YP; Huang QH; Chen X
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1191-8. PubMed ID: 18334413
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of predominant patterns of coordination on the exploitation of interaction torques in a two-joint rhythmic arm movement.
    de Rugy A; Riek S; Carson RG
    Exp Brain Res; 2006 Nov; 175(3):439-52. PubMed ID: 16763831
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Muscle activation patterns during two types of voluntary single-joint movement.
    Gottlieb GL
    J Neurophysiol; 1998 Oct; 80(4):1860-7. PubMed ID: 9772245
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Association between contraction-induced increases in elbow flexor muscle thickness and distal biceps brachii tendon moment arm depends on the muscle thickness measurement site.
    Akagi R; Iwanuma S; Hashizume S; Kanehisa H; Yanai T; Kawakami Y
    J Appl Biomech; 2014 Feb; 30(1):134-9. PubMed ID: 24676520
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Organizing principles for voluntary movement: extending single-joint rules.
    Almeida GL; Hong DA; Corcos D; Gottlieb GL
    J Neurophysiol; 1995 Oct; 74(4):1374-81. PubMed ID: 8989378
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Position-dependent torque coupling and associated muscle activation in the hemiparetic upper extremity.
    Ellis MD; Acosta AM; Yao J; Dewald JP
    Exp Brain Res; 2007 Feb; 176(4):594-602. PubMed ID: 16924488
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Strategies for muscle activation during isometric torque generation at the human elbow.
    Buchanan TS; Rovai GP; Rymer WZ
    J Neurophysiol; 1989 Dec; 62(6):1201-12. PubMed ID: 2600619
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of the electromyographic activity of human elbow joint muscles during slow linear flexion movements in isotorque conditions.
    Tal'nov AN; Serenko SG; Strafun SS; Kostyukov AI
    Neuroscience; 1999 Mar; 90(3):1123-36. PubMed ID: 10218811
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Bio-mechanical Model for Elbow Isokinetic and Isotonic Flexions.
    Wang X; Tao X; So RCH
    Sci Rep; 2017 Aug; 7(1):8919. PubMed ID: 28827759
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fast orthogonal search method to estimate upper arm Hill-based muscle model parameters.
    Mountjoy KC; Hashtrudi-Zaad K; Morin EL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3720-5. PubMed ID: 19163520
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Static torque-angle relation of human elbow joint estimated with artificial neural network technique.
    Uchiyama T; Bessho T; Akazawa K
    J Biomech; 1998 Jun; 31(6):545-54. PubMed ID: 9755039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.