These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9239572)

  • 1. Optimal digital filtering requires a different cut-off frequency strategy for the determination of the higher derivatives.
    Giakas G; Baltzopoulos V
    J Biomech; 1997 Aug; 30(8):851-5. PubMed ID: 9239572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of automatic filtering techniques applied to biomechanical walking data.
    Giakas G; Baltzopoulos V
    J Biomech; 1997 Aug; 30(8):847-50. PubMed ID: 9239571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the optimal system-specific cut-off frequencies for filtering in-vitro upper extremity impact force and acceleration data by residual analysis.
    Burkhart TA; Dunning CE; Andrews DM
    J Biomech; 2011 Oct; 44(15):2728-31. PubMed ID: 21903214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic segment filtering procedure for processing non-stationary signals.
    Davis DJ; Challis JH
    J Biomech; 2020 Mar; 101():109619. PubMed ID: 31952818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of four methods for determining the cut-off frequency of accelerometer signals in able-bodied individuals and ACL ruptured subjects.
    Fazlali H; Sadeghi H; Sadeghi S; Ojaghi M; Allard P
    Gait Posture; 2020 Jul; 80():217-222. PubMed ID: 32540777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of digital filtering on peak acceleration and force measurements for artistic gymnastics skills.
    Campbell RA; Bradshaw EJ; Ball N; Hunter A; Spratford W
    J Sports Sci; 2020 Aug; 38(16):1859-1868. PubMed ID: 32329647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smoothing and differentiation of displacement-time data: an application of splines and digital filtering.
    Vaughan CL
    Int J Biomed Comput; 1982 Sep; 13(5):375-86. PubMed ID: 6897057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic algorithm for filtering kinematic signals with impacts in the Wigner representation.
    Georgakis A; Stergioulas LK; Giakas G
    Med Biol Eng Comput; 2002 Nov; 40(6):625-33. PubMed ID: 12507312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Filtering of kinematic signals using the Hodrick-Prescott filter.
    Alonso FJ; Pintado P; Del Castillo JM
    J Appl Biomech; 2005 Aug; 21(3):271-85. PubMed ID: 16260847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital filtering of three-dimensional lower extremity kinematics: an assessment.
    Sinclair J; Taylor PJ; Hobbs SJ
    J Hum Kinet; 2013 Dec; 39():25-36. PubMed ID: 24511338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive P-Splines for challenging filtering problems in biomechanics.
    Pohl AJ; Schofield MR; Edwards WB; Ferber R
    J Biomech; 2024 Apr; 167():112074. PubMed ID: 38614021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimising filtering parameters for a 3D motion analysis system.
    Schreven S; Beek PJ; Smeets JB
    J Electromyogr Kinesiol; 2015 Oct; 25(5):808-14. PubMed ID: 26159504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filtering affects the calculation of the largest Lyapunov exponent.
    Raffalt PC; Senderling B; Stergiou N
    Comput Biol Med; 2020 Jul; 122():103786. PubMed ID: 32479345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertical Ground Reaction Force Estimation From Benchmark Nonstationary Kinematic Data.
    Davis DJ; Challis JH
    J Appl Biomech; 2021 Jun; 37(3):272-276. PubMed ID: 33690167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technique for the evaluation of derivatives from noisy biomechanical displacement data using a model-based bandwidth-selection procedure.
    D'Amico M; Ferrigno G
    Med Biol Eng Comput; 1990 Sep; 28(5):407-15. PubMed ID: 2277540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple filter circuit for denoising biomechanical impact signals.
    Subramaniam SR; Georgakis A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6938-41. PubMed ID: 19964461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On precision limits for derivatives numerically calculated from noisy data.
    Lanshammar H
    J Biomech; 1982; 15(6):459-70. PubMed ID: 7118960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-frequency analysis and filtering of kinematic signals with impacts using the Wigner function: accurate estimation of the second derivative.
    Giakas G; Stergioulas LK; Vourdas A
    J Biomech; 2000 May; 33(5):567-74. PubMed ID: 10708777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast time-varying linear filters for suppression of baseline drift in electrocardiographic signals.
    Kozumplík J; Provazník I
    Biomed Eng Online; 2017 Feb; 16(1):24. PubMed ID: 28173809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal digital filters for analyzing the mid-latency auditory P50 event-related potential in patients with Alzheimer's disease.
    Liljander S; Holm A; Keski-Säntti P; Partanen JV
    J Neurosci Methods; 2016 Jun; 266():50-67. PubMed ID: 27015794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.