These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 9239621)

  • 1. Mechanical advantage in wheelchair lever propulsion: effect on physical strain and efficiency.
    van der Woude LH; Botden E; Vriend I; Veeger D
    J Rehabil Res Dev; 1997 Jul; 34(3):286-94. PubMed ID: 9239621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheelchair propulsion: functional ability dependent factors in wheelchair basketball players.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Scand J Rehabil Med; 1994 Mar; 26(1):37-48. PubMed ID: 8023084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems.
    Mukherjee G; Samanta A
    J Rehabil Res Dev; 2001; 38(4):391-9. PubMed ID: 11563492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion.
    Veeger HE; van der Woude LH; Rozendal RH
    Med Sci Sports Exerc; 1992 Jan; 24(1):100-7. PubMed ID: 1548983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a pushrim-activated, power-assisted wheelchair.
    Cooper RA; Fitzgerald SG; Boninger ML; Prins K; Rentschler AJ; Arva J; O'connor TJ
    Arch Phys Med Rehabil; 2001 May; 82(5):702-8. PubMed ID: 11346854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved efficiency with a wheelchair propelled by the legs using voluntary activity or electric stimulation.
    Stein RB; Chong SL; James KB; Bell GJ
    Arch Phys Med Rehabil; 2001 Sep; 82(9):1198-203. PubMed ID: 11552191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of visual biofeedback on the propulsion effectiveness of experienced wheelchair users.
    Kotajarvi BR; Basford JR; An KN; Morrow DA; Kaufman KR
    Arch Phys Med Rehabil; 2006 Apr; 87(4):510-5. PubMed ID: 16571390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of wheelchair propulsion and effects of strategy.
    Lenton JP; Fowler N; van der Woude L; Goosey-Tolfrey VL
    Int J Sports Med; 2008 May; 29(5):384-9. PubMed ID: 17879885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training.
    de Groot S; de Bruin M; Noomen SP; van der Woude LH
    Clin Biomech (Bristol); 2008 May; 23(4):434-41. PubMed ID: 18077065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selected comparisons between experienced and non-experienced individuals during manual wheelchair propulsion.
    Patterson P; Draper S
    Biomed Sci Instrum; 1997; 33():477-81. PubMed ID: 9731406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measures of energy expenditure and comfort in an ESP wheelchair: a controlled trial using hemiplegic users'.
    Mandy A; Lesley S
    Disabil Rehabil Assist Technol; 2009 May; 4(3):137-42. PubMed ID: 19241200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seat height in handrim wheelchair propulsion.
    van der Woude LH; Veeger DJ; Rozendal RH; Sargeant TJ
    J Rehabil Res Dev; 1989; 26(4):31-50. PubMed ID: 2600867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of arm frequency during synchronous and asynchronous wheelchair propulsion on efficiency.
    Lenton JP; van der Woude L; Fowler N; Goosey-Tolfrey V
    Int J Sports Med; 2009 Apr; 30(4):233-9. PubMed ID: 19199211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical efficiency of two commercial lever-propulsion mechanisms for manual wheelchair locomotion.
    Lui J; MacGillivray MK; Sheel AW; Jeyasurya J; Sadeghi M; Sawatzky BJ
    J Rehabil Res Dev; 2013; 50(10):1363-72. PubMed ID: 24699972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power-assisted wheels ease energy costs and perceptual responses to wheelchair propulsion in persons with shoulder pain and spinal cord injury.
    Nash MS; Koppens D; van Haaren M; Sherman AL; Lippiatt JP; Lewis JE
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2080-5. PubMed ID: 18996235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of rear wheel camber in manual wheelchair propulsion.
    Veeger D; van der Woude LH; Rozendal RH
    J Rehabil Res Dev; 1989; 26(2):37-46. PubMed ID: 2724151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of steering on the physiological energy cost of wheelchair propulsion.
    Reid M; Lawrie AT; Hunter J; Warren PM
    Scand J Rehabil Med; 1990; 22(3):139-43. PubMed ID: 2244191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explaining differences in the metabolic cost and efficiency of treadmill locomotion in children.
    Frost G; Bar-Or O; Dowling J; Dyson K
    J Sports Sci; 2002 Jun; 20(6):451-61. PubMed ID: 12137175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output.
    Hintzy F; Tordi N
    Clin Biomech (Bristol); 2004 May; 19(4):343-9. PubMed ID: 15109753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.