These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 9240468)
1. Monoclonal antibodies against pupa-specific surface antigens of Sarcophaga peregrina (flesh fly) hemocytes. Hori S; Kobayashi A; Natori S Biochem Biophys Res Commun; 1997 Jul; 236(2):497-501. PubMed ID: 9240468 [TBL] [Abstract][Full Text] [Related]
2. Monoclonal antibody MS13 identifies a plasmatocyte membrane protein and inhibits encapsulation and spreading reactions of Manduca sexta hemocytes. Wiegand C; Levin D; Gillespie J; Willott E; Kanost M; Trenczek T Arch Insect Biochem Physiol; 2000 Nov; 45(3):95-108. PubMed ID: 11169749 [TBL] [Abstract][Full Text] [Related]
3. Differences between larval and pupal hemocytes of the tobacco hornworm, Manduca sexta, determined by monoclonal antibodies and density centrifugation. Beetz S; Brinkmann M; Trenczek T J Insect Physiol; 2004 Sep; 50(9):805-19. PubMed ID: 15350501 [TBL] [Abstract][Full Text] [Related]
4. Targeted disruption of a pupal hemocyte protein of Sarcophaga by RNA interference. Nishikawa T; Natori S Eur J Biochem; 2001 Oct; 268(20):5295-9. PubMed ID: 11606191 [TBL] [Abstract][Full Text] [Related]
5. Participation of a 200-kDa hemocyte membrane protein in the dissociation of the fat body at the metamorphosis of Sarcophaga. Kurata S; Kobayashi H; Natori S Dev Biol; 1991 Jul; 146(1):179-85. PubMed ID: 2060701 [TBL] [Abstract][Full Text] [Related]
6. The 29-kDa hemocyte proteinase dissociates fat body at metamorphosis of Sarcophaga. Kurata S; Saito H; Natori S Dev Biol; 1992 Sep; 153(1):115-21. PubMed ID: 1516741 [TBL] [Abstract][Full Text] [Related]
7. Characterisation of monoclonal antibodies to haemocyte types of scallop (Chlamys farreri). Jing X; Wenbin Z Fish Shellfish Immunol; 2005 Jul; 19(1):17-25. PubMed ID: 15722228 [TBL] [Abstract][Full Text] [Related]
8. Involvement of insect-derived growth factor (IDGF) in the cell growth of an embryonic cell line of flesh fly. Tanaka Y; Yamaguchi S; Fujii-Taira I; Iijima R; Natori S; Homma KJ Biochem Biophys Res Commun; 2006 Nov; 350(2):334-8. PubMed ID: 17011515 [TBL] [Abstract][Full Text] [Related]
9. Characterization of monoclonal antibodies against cell wall epitopes of the insect pathogenic fungus, Nomuraea rileyi: differential binding to fungal surfaces and cross-reactivity with host hemocytes and basement membrane components. Pendland JC; Boucias DG Eur J Cell Biol; 1998 Feb; 75(2):118-27. PubMed ID: 9548369 [TBL] [Abstract][Full Text] [Related]
10. A novel protease in the pupal yellow body of Sarcophaga peregrina (flesh fly). Its purification and cDNA cloning. Nakajima Y; Tsuji Y; Homma Ki; Natori S J Biol Chem; 1997 Sep; 272(38):23805-10. PubMed ID: 9295327 [TBL] [Abstract][Full Text] [Related]
11. Length variation in a specific region of the period gene correlates with differences in pupal diapause incidence in the flesh fly, Sarcophaga bullata. Han B; Denlinger DL J Insect Physiol; 2009 May; 55(5):415-8. PubMed ID: 19186187 [TBL] [Abstract][Full Text] [Related]
12. A novel hemocyte-specific membrane protein of Sarcophaga (flesh fly). Hori S; Kobayashi A; Natori S Eur J Biochem; 2000 Sep; 267(17):5397-403. PubMed ID: 10951197 [TBL] [Abstract][Full Text] [Related]
13. Plasmodium vivax: a monoclonal antibody recognizes a circumsporozoite protein precursor on the sporozoite surface. Gonzalez-Ceron L; Rodriguez MH; Wirtz RA; Sina BJ; Palomeque OL; Nettel JA; Tsutsumi V Exp Parasitol; 1998 Nov; 90(3):203-11. PubMed ID: 9806864 [TBL] [Abstract][Full Text] [Related]
14. Tickcidal effect of monoclonal antibodies against hemocytes, Om21, in an adult female tick, Ornithodoros moubata (Acari: Argasidae). Matsuo T; Inoue N; Ruheta MR; Taylor D; Fujisaki K J Parasitol; 2004 Aug; 90(4):715-20. PubMed ID: 15357059 [TBL] [Abstract][Full Text] [Related]
15. Comparison of antigenicity among haemocytes of seven bivalve species by monoclonal antibodies against haemocytes of scallop (Chlamys farreri). Jing X; Wenbin Z Fish Shellfish Immunol; 2006 Apr; 20(4):528-35. PubMed ID: 16157487 [TBL] [Abstract][Full Text] [Related]
16. The roles of Sarcophaga defense molecules in immunity and metamorphosis. Natori S; Shiraishi H; Hori S; Kobayashi A Dev Comp Immunol; 1999; 23(4-5):317-28. PubMed ID: 10426425 [TBL] [Abstract][Full Text] [Related]
17. Follow-up of protein release from Pseudoplusia includens hemocytes: a first step toward identification of factors mediating encapsulation in insects. Loret SM; Strand MR Eur J Cell Biol; 1998 Jun; 76(2):146-55. PubMed ID: 9696355 [TBL] [Abstract][Full Text] [Related]
18. Monoclonal antibodies specific to haemocytes of black tiger prawn Penaeus monodon. Winotaphan P; Sithigorngul P; Muenpol O; Longyant S; Rukpratanporn S; Chaivisuthangkura P; Sithigorngul W; Petsom A; Menasveta P Fish Shellfish Immunol; 2005 Mar; 18(3):189-98. PubMed ID: 15519539 [TBL] [Abstract][Full Text] [Related]
19. Differential activation of the lectin and antimicrobial peptide genes in Sarcophaga peregrina (the flesh fly). Tanji T; Shiraishi H; Natori S; Ohashi-Kobayashi A Arch Insect Biochem Physiol; 2008 Dec; 69(4):189-98. PubMed ID: 18949806 [TBL] [Abstract][Full Text] [Related]
20. Morphological characterization of the hemocytes of the clam, Ruditapes decussatus (Mollusca: Bivalvia). López C; Carballal MJ; Azevedo C; Villalba A J Invertebr Pathol; 1997 Jan; 69(1):51-7. PubMed ID: 9028928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]