These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9240725)

  • 21. [The establishment of a new mechanobiology model of bone and functional adaptation studies in vivo].
    Chen XY; Zhang XZ; Zhang YL; Zhang CQ; Zhao HB; Zhang YH; Mao Y
    Zhonghua Yi Xue Za Zhi; 2007 May; 87(17):1160-4. PubMed ID: 17686232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of syndecan-3 and tenascin-C: possible involvement in periosteum development.
    Koyama E; Shimazu A; Leatherman JL; Golden EB; Nah HD; Pacifici M
    J Orthop Res; 1996 May; 14(3):403-12. PubMed ID: 8676253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early loading-related changes in the activity of glucose 6-phosphate dehydrogenase and alkaline phosphatase in osteocytes and periosteal osteoblasts in rat fibulae in vivo.
    Dodds RA; Ali N; Pead MJ; Lanyon LE
    J Bone Miner Res; 1993 Mar; 8(3):261-7. PubMed ID: 8456583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An in vivo model for investigations of mechanical signal transduction in trabecular bone.
    Moalli MR; Caldwell NJ; Patil PV; Goldstein SA
    J Bone Miner Res; 2000 Jul; 15(7):1346-53. PubMed ID: 10893683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global gene expression analysis in the bones reveals involvement of several novel genes and pathways in mediating an anabolic response of mechanical loading in mice.
    Xing W; Baylink D; Kesavan C; Hu Y; Kapoor S; Chadwick RB; Mohan S
    J Cell Biochem; 2005 Dec; 96(5):1049-60. PubMed ID: 16149068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Osteocyte viability and regulation of osteoblast function in a 3D trabecular bone explant under dynamic hydrostatic pressure.
    Takai E; Mauck RL; Hung CT; Guo XE
    J Bone Miner Res; 2004 Sep; 19(9):1403-10. PubMed ID: 15312240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures.
    Malaval L; Modrowski D; Gupta AK; Aubin JE
    J Cell Physiol; 1994 Mar; 158(3):555-72. PubMed ID: 8126078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tenascin-C in tendon regions subjected to compression.
    Mehr D; Pardubsky PD; Martin JA; Buckwalter JA
    J Orthop Res; 2000 Jul; 18(4):537-45. PubMed ID: 11052489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental expression and hormonal regulation of the rat matrix Gla protein (MGP) gene in chondrogenesis and osteogenesis.
    Barone LM; Owen TA; Tassinari MS; Bortell R; Stein GS; Lian JB
    J Cell Biochem; 1991 Aug; 46(4):351-65. PubMed ID: 1757478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of tenascin-C in adaptation of tendons to compressive loading.
    Martin JA; Mehr D; Pardubsky PD; Buckwalter JA
    Biorheology; 2003; 40(1-3):321-9. PubMed ID: 12454422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density.
    Hsieh YF; Silva MJ
    J Orthop Res; 2002 Jul; 20(4):764-71. PubMed ID: 12168665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CMF608-a novel mechanical strain-induced bone-specific protein expressed in early osteochondroprogenitor cells.
    Segev O; Samach A; Faerman A; Kalinski H; Beiman M; Gelfand A; Turam H; Boguslavsky S; Moshayov A; Gottlieb H; Kazanov E; Nevo Z; Robinson D; Skaliter R; Einat P; Binderman I; Feinstein E
    Bone; 2004 Feb; 34(2):246-60. PubMed ID: 14962803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical loading and sex hormone interactions in organ cultures of rat ulna.
    Cheng MZ; Zaman G; Rawlinson SC; Suswillo RF; Lanyon LE
    J Bone Miner Res; 1996 Apr; 11(4):502-11. PubMed ID: 8992881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estrogen enhances the stimulation of bone collagen synthesis by loading and exogenous prostacyclin, but not prostaglandin E2, in organ cultures of rat ulnae.
    Cheng MZ; Zaman G; Lanyon LE
    J Bone Miner Res; 1994 Jun; 9(6):805-16. PubMed ID: 8079656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical loading stimulates BMP7, but not BMP2, production by osteocytes.
    Santos A; Bakker AD; Willems HM; Bravenboer N; Bronckers AL; Klein-Nulend J
    Calcif Tissue Int; 2011 Oct; 89(4):318-26. PubMed ID: 21842277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequential analysis of gene expression after an osteogenic stimulus: c-fos expression is induced in osteocytes.
    Inaoka T; Lean JM; Bessho T; Chow JW; Mackay A; Kokubo T; Chambers TJ
    Biochem Biophys Res Commun; 1995 Dec; 217(1):264-70. PubMed ID: 8526921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of bone resorption and stimulation of formation by mechanical loading of the modeling rat ulna in vivo.
    Hillam RA; Skerry TM
    J Bone Miner Res; 1995 May; 10(5):683-9. PubMed ID: 7639102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of loading frequency on mechanically induced bone formation.
    Hsieh YF; Turner CH
    J Bone Miner Res; 2001 May; 16(5):918-24. PubMed ID: 11341337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calvarial and limb bone cells in organ and monolayer culture do not show the same early responses to dynamic mechanical strain.
    Rawlinson SC; Mosley JR; Suswillo RF; Pitsillides AA; Lanyon LE
    J Bone Miner Res; 1995 Aug; 10(8):1225-32. PubMed ID: 8585427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular accommodation and the response of bone to mechanical loading.
    Schriefer JL; Warden SJ; Saxon LK; Robling AG; Turner CH
    J Biomech; 2005 Sep; 38(9):1838-45. PubMed ID: 16023471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.