BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9241139)

  • 1. Kinetics of Dissolution of beta-Tricalcium Phosphate.
    Bohner M; Lemaître J; Ring TA
    J Colloid Interface Sci; 1997 Jun; 190(1):37-48. PubMed ID: 9241139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization, dissolution and solubility of synthetic cadmium hydroxylapatite [Cd5(PO4)3OH] at 25-45°C.
    Zhu Y; Zhu Z; Zhao X; Liang Y; Dai L; Huang Y
    Geochem Trans; 2015; 16():9. PubMed ID: 26190941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization, dissolution and solubility of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3OH] at 25 °C and pH 2-9.
    Zhu Y; Huang B; Zhu Z; Liu H; Huang Y; Zhao X; Liang M
    Geochem Trans; 2016; 17():2. PubMed ID: 27158243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of copper substitution on the local chemical structure and dissolution property of copper-doped β-tricalcium phosphate.
    Konishi T; Nagano Y; Maegawa M; Lim PN; Thian ES
    Acta Biomater; 2019 Jun; 91():72-81. PubMed ID: 31034946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of precursor's solubility on the mechanical property of hydroxyapatite formed by dissolution-precipitation reaction of tricalcium phosphate.
    Ahmad N; Tsuru K; Munar ML; Maruta M; Matsuya S; Ishikawa K
    Dent Mater J; 2012; 31(6):995-1000. PubMed ID: 23207206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and Histological Comparison of Hydroxyapatite, Carbonate Apatite, and β-Tricalcium Phosphate Bone Substitutes.
    Ishikawa K; Miyamoto Y; Tsuchiya A; Hayashi K; Tsuru K; Ohe G
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30332751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solubility of
    Gregory TM; Moreno EC; Patel JM; Brown WE
    J Res Natl Bur Stand A Phys Chem; 1974; 78A(6):667-674. PubMed ID: 32189809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolution rate of zinc-containing beta-tricalcium phosphate ceramics.
    Ito A; Senda K; Sogo Y; Oyane A; Yamazaki A; Legeros RZ
    Biomed Mater; 2006 Sep; 1(3):134-9. PubMed ID: 18458394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composition effects on the pH of a hydraulic calcium phosphate cement.
    Bohner M; Van Landuyt P; Merkle HP; Lemaitre J
    J Mater Sci Mater Med; 1997 Nov; 8(11):675-81. PubMed ID: 15348818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system.
    Reid JW; Pietak A; Sayer M; Dunfield D; Smith TJ
    Biomaterials; 2005 Jun; 26(16):2887-97. PubMed ID: 15603784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface properties of various powdered hydroxyapatites.
    García Rodenas L; Palacios JM; Apella MC; Morando PJ; Blesa MA
    J Colloid Interface Sci; 2005 Oct; 290(1):145-54. PubMed ID: 15964012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constant composition dissolution of mixed phases. II. Selective dissolution of calcium phosphates.
    Tang R; Hass M; Wu W; Gulde S; Nancollas GH
    J Colloid Interface Sci; 2003 Apr; 260(2):379-84. PubMed ID: 12686190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation, characterization and in vitro dissolution behavior of porous biphasic α/β-tricalcium phosphate bioceramics.
    Xie L; Yu H; Deng Y; Yang W; Liao L; Long Q
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1007-1015. PubMed ID: 26652459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluoride uptake by hydroxyapatite formed by the hydrolysis of alpha-tricalcium phosphate.
    Leamy P; Brown PW; TenHuisen K; Randall C
    J Biomed Mater Res; 1998 Dec; 42(3):458-64. PubMed ID: 9788510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of preparation conditions in aqueous solution on properties of hydroxyapatites.
    Ishikawa K; Kon M; Tenshin S; Kuwayama N
    Dent Mater J; 1990 Jun; 9(1):58-69. PubMed ID: 2129116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study on the resorbability and dissolution behavior of octacalcium phosphate, β-tricalcium phosphate, and hydroxyapatite under physiological conditions.
    Sakai S; Anada T; Tsuchiya K; Yamazaki H; Margolis HC; Suzuki O
    Dent Mater J; 2016; 35(2):216-24. PubMed ID: 27041011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering.
    Mondal D; Nguyen L; Oh IH; Lee BT
    J Biomed Mater Res A; 2013 May; 101(5):1489-501. PubMed ID: 23135893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramics.
    Gomes S; Kaur A; Grenèche JM; Nedelec JM; Renaudin G
    Acta Biomater; 2017 Mar; 50():78-88. PubMed ID: 27965170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vitro and In Vivo Evaluation of Whitlockite Biocompatibility: Comparative Study with Hydroxyapatite and β-Tricalcium Phosphate.
    Jang HL; Zheng GB; Park J; Kim HD; Baek HR; Lee HK; Lee K; Han HN; Lee CK; Hwang NS; Lee JH; Nam KT
    Adv Healthc Mater; 2016 Jan; 5(1):128-36. PubMed ID: 25963732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of dissolution of calcium hydroxyapatite powder. III: pH and sample conditioning effects.
    Thomann JM; Voegel JC; Gramain P
    Calcif Tissue Int; 1990 Feb; 46(2):121-9. PubMed ID: 2153427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.