These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 9241163)

  • 1. A Model for Detachment of a Partially Wetting Drop from a Solid Surface by Shear Flow.
    Basu S; Nandakumar K; Masliyah JH
    J Colloid Interface Sci; 1997 Jun; 190(1):253-7. PubMed ID: 9241163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deviation of sliding drops at a chemical step.
    Semprebon C; Varagnolo S; Filippi D; Perlini L; Pierno M; Brinkmann M; Mistura G
    Soft Matter; 2016 Oct; 12(40):8268-8273. PubMed ID: 27510324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hysteresis of Contact Angle of Sessile Droplets on Smooth Homogeneous Solid Substrates via Disjoining/Conjoining Pressure.
    Kuchin I; Starov V
    Langmuir; 2015 May; 31(19):5345-52. PubMed ID: 25901520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water slug to drop and film transitions in gas-flow channels.
    Cheah MJ; Kevrekidis IG; Benziger JB
    Langmuir; 2013 Dec; 29(48):15122-36. PubMed ID: 24206393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention forces and contact angles for critical liquid drops on non-horizontal surfaces.
    ElSherbini AI; Jacobi AM
    J Colloid Interface Sci; 2006 Jul; 299(2):841-9. PubMed ID: 16542670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular-dynamics study of sliding liquid nanodrops: Dynamic contact angles and the pearling transition.
    Fernández-Toledano JC; Blake TD; Limat L; De Coninck J
    J Colloid Interface Sci; 2019 Jul; 548():66-76. PubMed ID: 30986712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drop Retention and Departure in Adiabatic Shear Flow on Structured Superhydrophobic Surfaces.
    Lyons BM; Maynes D; Crockett J; Iverson BD
    Langmuir; 2024 Sep; 40(36):18882-18895. PubMed ID: 39180481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous detachment of oil drops from solid substrates: governing factors.
    Kolev VL; Kochijashky II; Danov KD; Kralchevsky PA; Broze G; Mehreteab A
    J Colloid Interface Sci; 2003 Jan; 257(2):357-63. PubMed ID: 16256491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A thermodynamic model of contact angle hysteresis.
    Makkonen L
    J Chem Phys; 2017 Aug; 147(6):064703. PubMed ID: 28810760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Gravity on the Sliding Angle of Water Drops on Nanopillared Superhydrophobic Surfaces.
    Li H; Yan T; Fichthorn KA
    Langmuir; 2020 Aug; 36(33):9916-9925. PubMed ID: 32787051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drop detachment and motion on fuel cell electrode materials.
    Gauthier E; Hellstern T; Kevrekidis IG; Benziger J
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):761-71. PubMed ID: 22201518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stages That Lead to Drop Depinning and Onset of Motion.
    Jena AK; Bhimavarapu YVR; Tang S; Liu J; Das R; Gulec S; Vinod A; Yao CW; Cai T; Tadmor R
    Langmuir; 2022 Jan; 38(1):92-99. PubMed ID: 34939810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-selective sliding of sessile drops on a slightly inclined plane using low-frequency AC electrowetting.
    Hong J; Lee SJ; Koo BC; Suh YK; Kang KH
    Langmuir; 2012 Apr; 28(15):6307-12. PubMed ID: 22439770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning Drop Friction Force Microscopy.
    Hinduja C; Laroche A; Shumaly S; Wang Y; Vollmer D; Butt HJ; Berger R
    Langmuir; 2022 Dec; 38(48):14635-14643. PubMed ID: 36399702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological classification and dynamics of a two-dimensional drop sliding on a vertical plate.
    Liu M; Chen XP
    Eur Phys J E Soft Matter; 2018 Aug; 41(8):92. PubMed ID: 30112592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diminution of contact angle hysteresis under the influence of an oscillating force.
    Manor O
    Langmuir; 2014 Jun; 30(23):6841-5. PubMed ID: 24856418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.