These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 9241217)

  • 41. New insights about flocculation process in sodium caseinate-stabilized emulsions.
    Huck-Iriart C; Montes-de-Oca-Ávalos J; Herrera ML; Candal RJ; Pinto-de-Oliveira CL; Linares-Torriani I
    Food Res Int; 2016 Nov; 89(Pt 1):338-346. PubMed ID: 28460923
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Properties and stability of oil-in-water emulsions stabilized by coconut skim milk proteins.
    Onsaard E; Vittayanont M; Srigam S; McClements DJ
    J Agric Food Chem; 2005 Jul; 53(14):5747-53. PubMed ID: 15998143
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of Type of Sugar Beet Pectin-Sodium Caseinate Interaction on Emulsion Properties at pH 4.5 and pH 7.
    Juyang Z; Wolf B
    Foods; 2021 Mar; 10(3):. PubMed ID: 33802694
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Production and characterization of oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin-pectin membranes.
    Moreau L; Kim HJ; Decker EA; McClements DJ
    J Agric Food Chem; 2003 Oct; 51(22):6612-7. PubMed ID: 14558785
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of electrolyte in silicone oil-in-water emulsions stabilised by fumed silica particles.
    Horozov TS; Binks BP; Gottschalk-Gaudig T
    Phys Chem Chem Phys; 2007 Dec; 9(48):6398-404. PubMed ID: 18060170
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physicochemical properties of peanut oil-based diacylglycerol and their derived oil-in-water emulsions stabilized by sodium caseinate.
    Long Z; Zhao M; Liu N; Liu D; Sun-Waterhouse D; Zhao Q
    Food Chem; 2015 Oct; 184():105-13. PubMed ID: 25872432
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of free protein on flocculation stability of beta-lactoglobulin stabilized oil-in-water emulsions at neutral pH and ambient temperature.
    Kim HJ; Decker EA; McClements DJ
    Langmuir; 2004 Nov; 20(24):10394-8. PubMed ID: 15544365
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of the molecular weight of carboxymethylcellulose on properties and stability of whey protein-stabilized oil-in-water emulsions.
    Huan Y; Zhang S; Vardhanabhuti B
    J Dairy Sci; 2016 May; 99(5):3305-3315. PubMed ID: 26947286
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of pH and ionic strength on the physicochemical properties of coconut milk emulsions.
    Tangsuphoom N; Coupland JN
    J Food Sci; 2008 Aug; 73(6):E274-80. PubMed ID: 19241548
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rheology of water-in-water emulsions: Caseinate-pectin and caseinate-alginate systems.
    Maestro A; Gutiérrez JM; Santamaría E; González C
    Carbohydr Polym; 2020 Dec; 249():116799. PubMed ID: 32933657
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of rosemary essential oil nanoemulsions using a wheat biomass-derived surfactant.
    Martin-Piñero MJ; Ramirez P; Muñoz J; Alfaro MC
    Colloids Surf B Biointerfaces; 2019 Jan; 173():486-492. PubMed ID: 30336410
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes.
    Surh J; Gu YS; Decker EA; McClements DJ
    J Agric Food Chem; 2005 May; 53(10):4236-44. PubMed ID: 15884866
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure.
    Zúñiga RN; Skurtys O; Osorio F; Aguilera JM; Pedreschi F
    Carbohydr Polym; 2012 Oct; 90(2):1147-58. PubMed ID: 22840052
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein Nanocage as a pH-Switchable Pickering Emulsifier.
    Sarker M; Tomczak N; Lim S
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11193-11201. PubMed ID: 28290652
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Production and characterization of O/W emulsions containing cationic droplets stabilized by lecithin-chitosan membranes.
    Ogawa S; Decker EA; McClements DJ
    J Agric Food Chem; 2003 Apr; 51(9):2806-12. PubMed ID: 12696977
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of Emulsion Stabilization Properties of Gum Tragacanth, Xanthan Gum and Sucrose Monopalmitate: A Comparative Study.
    Pocan P; Ilhan E; Oztop MH
    J Food Sci; 2019 May; 84(5):1087-1093. PubMed ID: 30958906
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rheological properties of phospholipid-stabilized parenteral oil-in-water emulsions--effects of electrolyte concentration and presence of heparin.
    Silvander M; Hellström A; Wärnheim T; Claesson P
    Int J Pharm; 2003 Feb; 252(1-2):123-32. PubMed ID: 12550787
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microstructural evolution of viscoelastic emulsions stabilised by sodium caseinate and xanthan gum.
    Moschakis T; Murray BS; Dickinson E
    J Colloid Interface Sci; 2005 Apr; 284(2):714-28. PubMed ID: 15780315
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Theoretical stability maps for guiding preparation of emulsions stabilized by protein-polysaccharide interfacial complexes.
    Cho YH; McClements DJ
    Langmuir; 2009 Jun; 25(12):6649-57. PubMed ID: 19432398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.