These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 9241769)
1. Evidence of alpha-helix slidings during bacteriorhodopsin photocycle-energetics coupling. Goto K; Iwamoto M Tohoku J Exp Med; 1997 May; 182(1):15-33. PubMed ID: 9241769 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics study of early picosecond events in the bacteriorhodopsin photocycle: dielectric response, vibrational cooling and the J, K intermediates. Xu D; Martin C; Schulten K Biophys J; 1996 Jan; 70(1):453-60. PubMed ID: 8770221 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics study of the 13-cis form (bR548) of bacteriorhodopsin and its photocycle. Logunov I; Humphrey W; Schulten K; Sheves M Biophys J; 1995 Apr; 68(4):1270-82. PubMed ID: 7787017 [TBL] [Abstract][Full Text] [Related]
4. Reducing the flexibility of retinal restores a wild-type-like photocycle in bacteriorhodopsin mutants defective in protein-retinal coupling. Delaney JK; Yahalom G; Sheves M; Subramaniam S Proc Natl Acad Sci U S A; 1997 May; 94(10):5028-33. PubMed ID: 9144184 [TBL] [Abstract][Full Text] [Related]
5. Coupling of the reisomerization of the retinal, proton uptake, and reprotonation of Asp-96 in the N photointermediate of bacteriorhodopsin. Dioumaev AK; Brown LS; Needleman R; Lanyi JK Biochemistry; 2001 Sep; 40(38):11308-17. PubMed ID: 11560478 [TBL] [Abstract][Full Text] [Related]
6. Femtosecond primary events in bacteriorhodopsin and its retinal modified analogs: revision of commonly accepted interpretation of electronic spectra of transient intermediates in the bacteriorhodopsin photocycle. Abramczyk H J Chem Phys; 2004 Jun; 120(23):11120-32. PubMed ID: 15268142 [TBL] [Abstract][Full Text] [Related]
7. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Edman K; Nollert P; Royant A; Belrhali H; Pebay-Peyroula E; Hajdu J; Neutze R; Landau EM Nature; 1999 Oct; 401(6755):822-6. PubMed ID: 10548112 [TBL] [Abstract][Full Text] [Related]
8. Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal. Schobert B; Cupp-Vickery J; Hornak V; Smith S; Lanyi J J Mol Biol; 2002 Aug; 321(4):715-26. PubMed ID: 12206785 [TBL] [Abstract][Full Text] [Related]
9. Tuning of retinal twisting in bacteriorhodopsin controls the directionality of the early photocycle steps. Bondar AN; Fischer S; Suhai S; Smith JC J Phys Chem B; 2005 Aug; 109(31):14786-8. PubMed ID: 16852870 [TBL] [Abstract][Full Text] [Related]
10. Light isomerizes the chromophore of bacteriorhodopsin. Tsuda M; Glaccum M; Nelson B; Ebrey TG Nature; 1980 Sep; 287(5780):351-3. PubMed ID: 7421996 [TBL] [Abstract][Full Text] [Related]
11. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Luecke H Biochim Biophys Acta; 2000 Aug; 1460(1):133-56. PubMed ID: 10984596 [TBL] [Abstract][Full Text] [Related]
12. Kinetic and thermodynamic study of the bacteriorhodopsin photocycle over a wide pH range. Ludmann K; Gergely C; Váró G Biophys J; 1998 Dec; 75(6):3110-9. PubMed ID: 9826631 [TBL] [Abstract][Full Text] [Related]
13. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin. Kim JM; Booth PJ; Allen SJ; Khorana HG J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776 [TBL] [Abstract][Full Text] [Related]
14. Crystallographic structure of the retinal and the protein after deprotonation of the Schiff base: the switch in the bacteriorhodopsin photocycle. Lanyi J; Schobert B J Mol Biol; 2002 Aug; 321(4):727-37. PubMed ID: 12206786 [TBL] [Abstract][Full Text] [Related]
15. An energy-based approach to packing the 7-helix bundle of bacteriorhodopsin. Chou KC; Carlacci L; Maggiora GM; Parodi LA; Schulz MW Protein Sci; 1992 Jun; 1(6):810-27. PubMed ID: 1304922 [TBL] [Abstract][Full Text] [Related]
16. A three-dimensional difference map of the N intermediate in the bacteriorhodopsin photocycle: part of the F helix tilts in the M to N transition. Vonck J Biochemistry; 1996 May; 35(18):5870-8. PubMed ID: 8639548 [TBL] [Abstract][Full Text] [Related]
17. Computational studies of the early intermediates of the bacteriorhodopsin photocycle. Engels M; Gerwert K; Bashford D Biophys Chem; 1995; 56(1-2):95-104. PubMed ID: 7662874 [TBL] [Abstract][Full Text] [Related]
18. Photochemistry of Bacteriorhodopsin with Various Oligomeric Statuses in Controlled Membrane Mimicking Environments: A Spectroscopic Study from Femtoseconds to Milliseconds. Kao YM; Cheng CH; Syue ML; Huang HY; Chen IC; Yu TY; Chu LK J Phys Chem B; 2019 Mar; 123(9):2032-2039. PubMed ID: 30742764 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of the D85S mutant of bacteriorhodopsin: model of an O-like photocycle intermediate. Rouhani S; Cartailler JP; Facciotti MT; Walian P; Needleman R; Lanyi JK; Glaeser RM; Luecke H J Mol Biol; 2001 Oct; 313(3):615-28. PubMed ID: 11676543 [TBL] [Abstract][Full Text] [Related]
20. Functional significance of a protein conformation change at the cytoplasmic end of helix F during the bacteriorhodopsin photocycle. Brown LS; Váró G; Needleman R; Lanyi JK Biophys J; 1995 Nov; 69(5):2103-11. PubMed ID: 8580354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]