These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9241769)

  • 41. Re-orientation of retinal in the M-photointermediate of bacteriorhodopsin.
    Ulrich AS; Wallat I; Heyn MP; Watts A
    Nat Struct Biol; 1995 Mar; 2(3):190-2. PubMed ID: 7773785
    [No Abstract]   [Full Text] [Related]  

  • 42. Structural characterization of the L-to-M transition of the bacteriorhodopsin photocycle.
    Hendrickson FM; Burkard F; Glaeser RM
    Biophys J; 1998 Sep; 75(3):1446-54. PubMed ID: 9726946
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Partitioning of free energy gain between the photoisomerized retinal and the protein in bacteriorhodopsin.
    Dioumaev AK; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1998 Jul; 37(28):9889-93. PubMed ID: 9665693
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The final stages of folding of the membrane protein bacteriorhodopsin occur by kinetically indistinguishable parallel folding paths that are mediated by pH.
    Lu H; Booth PJ
    J Mol Biol; 2000 May; 299(1):233-43. PubMed ID: 10860735
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution.
    Luecke H; Richter HT; Lanyi JK
    Science; 1998 Jun; 280(5371):1934-7. PubMed ID: 9632391
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Factors affecting the formation of an M-like intermediate in the photocycle of 13-cis-bacteriorhodopsin.
    Steinberg G; Sheves M; Bressler S; Ottolenghi M
    Biochemistry; 1994 Oct; 33(41):12439-50. PubMed ID: 7918466
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An investigation of the electrochemical cycle of bacteriorhodopsin analogs with the modified ring.
    Drachev LA; Drachev AL; Chekulaeva LN; Evstigneeva RP; Kaulen AD; Khitrina LV; Khodonov AA; Lazarova ZR; Mitsner BI
    Arch Biochem Biophys; 1989 Apr; 270(1):184-97. PubMed ID: 2539044
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle.
    Kaulen AD
    Biochim Biophys Acta; 2000 Aug; 1460(1):204-19. PubMed ID: 10984601
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H; Marti T; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Infrared studies of the photocycle of bacteriorhodopsin.
    Bagley K; Dollinger G; Eisenstein L; Hong M; Vittitow J; Zimányi L
    Prog Clin Biol Res; 1984; 164():27-37. PubMed ID: 6522402
    [No Abstract]   [Full Text] [Related]  

  • 51. Substitution of amino acids in helix F of bacteriorhodopsin: effects on the photochemical cycle.
    Ahl PL; Stern LJ; Mogi T; Khorana HG; Rothschild KJ
    Biochemistry; 1989 Dec; 28(26):10028-34. PubMed ID: 2575916
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Time-resolved thermodynamic changes photoinduced in 5,12-trans-locked bacteriorhodopsin. Evidence that retinal isomerization is required for protein activation.
    Losi A; Michler I; Gärtner W; Braslavsky SE
    Photochem Photobiol; 2000 Nov; 72(5):590-7. PubMed ID: 11107843
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The pH dependence of the subpicosecond retinal photoisomerization process in bacteriorhodopsin: evidence for parallel photocycles.
    Song L; Logunov SL; Yang D; el-Sayed MA
    Biophys J; 1994 Nov; 67(5):2008-12. PubMed ID: 7858138
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chromophore reorientations in the early photolysis intermediates of bacteriorhodopsin.
    Esquerra RM; Che D; Shapiro DB; Lewis JW; Bogomolni RA; Fukushima J; Kliger DS
    Biophys J; 1996 Feb; 70(2):962-70. PubMed ID: 8789113
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of the 9-methyl group of the retinal on the photocycle of bacteriorhodopsin studied by time-resolved rapid-scan and static low-temperature Fourier transform infrared difference spectroscopy.
    Weidlich O; Friedman N; Sheves M; Siebert F
    Biochemistry; 1995 Oct; 34(41):13502-10. PubMed ID: 7577939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism by which untwisting of retinal leads to productive bacteriorhodopsin photocycle states.
    Wolter T; Elstner M; Fischer S; Smith JC; Bondar AN
    J Phys Chem B; 2015 Feb; 119(6):2229-40. PubMed ID: 25196390
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Volume and enthalpy changes in the early steps of bacteriorhodopsin photocycle studied by time-resolved photoacoustics.
    Zhang D; Mauzerall D
    Biophys J; 1996 Jul; 71(1):381-8. PubMed ID: 8804620
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time-resolved X-ray diffraction reveals movement of F helix of D96N bacteriorhodopsin during M-MN transition at neutral pH.
    Oka T; Yagi N; Tokunaga F; Kataoka M
    Biophys J; 2002 May; 82(5):2610-6. PubMed ID: 11964247
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chromophore reorientation during the photocycle of bacteriorhodopsin: experimental methods and functional significance.
    Heyn MP; Borucki B; Otto H
    Biochim Biophys Acta; 2000 Aug; 1460(1):60-74. PubMed ID: 10984591
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization.
    Herbst J; Heyne K; Diller R
    Science; 2002 Aug; 297(5582):822-5. PubMed ID: 12161649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.