BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9241779)

  • 1. Okadaic acid and its interaction with sodium, potassium, magnesium and calcium ions: complex formation and transport across a liquid membrane.
    Blaghen M; Bouhallaoui A; Taleb H; Idrissi H; Tagmouti F; Talbi M; Fellat-Zarrouck K
    Toxicon; 1997 Jun; 35(6):843-7. PubMed ID: 9241779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionophoric properties of atropine: complexation and transport of Na+, K+, Mg2+ and Ca2+ ions across a liquid membrane.
    Rabi L; Moutaouakkil A; Blaghen M
    Nat Prod Res; 2008 Apr; 22(6):547-53. PubMed ID: 18415864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complexation and ionophoric properties of taxol and colchicine: complex formation and transport of sodium, potassium, magnesium and calcium ions across a liquid membrane.
    Blaghen M; Lahlou N; Dzairi FZ; Moutaouakkil A; Talbi M
    Nat Toxins; 1999; 7(5):179-85. PubMed ID: 10945480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complexation of okadaic acid: a preliminary study.
    Norte M; Fernández JJ; Souto ML; Gavín JA; Candenas ML; Ausina P
    Bioorg Med Chem Lett; 1998 May; 8(9):1007-12. PubMed ID: 9871698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Cation (K+, Mg2+, Na+, Ca2+) release in Zn(II) biosorption by Saccharomyces cerevisiae].
    Chen C; Wang JL
    Huan Jing Ke Xue; 2006 Nov; 27(11):2261-7. PubMed ID: 17326437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Palytoxin induces an increase in the cation conductance of red cells.
    Tosteson MT; Halperin JA; Kishi Y; Tosteson DC
    J Gen Physiol; 1991 Nov; 98(5):969-85. PubMed ID: 1684984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monovalent cation and L-type Ca2+ channels participate in calcium paradox-like phenomenon in rabbit aortic smooth muscle cells.
    Zakharov SI; Mongayt DA; Cohen RA; Bolotina VM
    J Physiol; 1999 Jan; 514 ( Pt 1)(Pt 1):71-81. PubMed ID: 9831717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro bioaccessibility of the marine biotoxin okadaic acid in shellfish.
    Braga AC; Alves RN; Maulvault AL; Barbosa V; Marques A; Costa PR
    Food Chem Toxicol; 2016 Mar; 89():54-9. PubMed ID: 26783635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-association of okadaic acid upon complexation with potassium ion.
    Daranas AH; Fernández JJ; Morales EQ; Norte M; Gavín JA
    J Med Chem; 2004 Jan; 47(1):10-3. PubMed ID: 14695814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The in vitro effect of the addition of ion exchange resins on the bioavailability of electrolytes in artificial enteral feeding formulas].
    Martí Bonmati E; Tomas Bondia F; Milara J; Cortijo J
    Farm Hosp; 2008; 32(2):91-5. PubMed ID: 18783708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-537A ionophore-mediated calcium transport and calcium phosphate formation in Pressman cells.
    Eanes ED; Costa JL
    Calcif Tissue Int; 1983; 35(2):250-7. PubMed ID: 6850405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of the mass fragmentation pathways of the polyether marine toxins, dinophysistoxins, and identification of isomer discrimination processes.
    Carey B; Fidalgo Sáez MJ; Hamilton B; O'Halloran J; van Pelt FN; James KJ
    Rapid Commun Mass Spectrom; 2012 Aug; 26(16):1793-802. PubMed ID: 22777781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-calcium exchange in renal epithelial cells: dependence on cell sodium and competitive inhibition by magnesium.
    Lyu RM; Smith L; Smith JB
    J Membr Biol; 1991 Oct; 124(1):73-83. PubMed ID: 1662727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active elimination of the marine biotoxin okadaic acid by P-glycoprotein through an in vitro gastrointestinal barrier.
    Ehlers A; These A; Hessel S; Preiss-Weigert A; Lampen A
    Toxicol Lett; 2014 Mar; 225(2):311-7. PubMed ID: 24374049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The effect of membrane-bound calcium on the activity of adenosine triphosphatase from erythrocytes and erythrocyte permeability for monovalent cations].
    Orlov SN; Shevchenko AS
    Biokhimiia; 1978 Feb; 43(2):208-15. PubMed ID: 148300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of okadaic acid as a pathway to the cell.
    Daranas AH; Cruz PG; Creus AH; Norte M; Fernández JJ
    Org Lett; 2007 Oct; 9(21):4191-4. PubMed ID: 17867692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cooking and heat treatment on concentration and tissue distribution of okadaic acid and dinophysistoxin-2 in mussels (Mytilus edulis).
    McCarron P; Kilcoyne J; Hess P
    Toxicon; 2008 May; 51(6):1081-9. PubMed ID: 18342356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deoxygenation-induced cation fluxes in sickle cells. III. Cation selectivity and response to pH and membrane potential.
    Joiner CH; Morris CL; Cooper ES
    Am J Physiol; 1993 Mar; 264(3 Pt 1):C734-44. PubMed ID: 8460677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of fatty acid esters of okadaic acid and related toxins in blue mussels (Mytilus edulis) from Norway.
    Torgersen T; Wilkins AL; Rundberget T; Miles CO
    Rapid Commun Mass Spectrom; 2008 Apr; 22(8):1127-36. PubMed ID: 18335462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion selectivity of the cation transport system of isolated intact cattle rod outer segments: evidence for a direct communication between the rod plasma membrane and the rod disk membranes.
    Schnetkamp PP
    Biochim Biophys Acta; 1980 May; 598(1):66-90. PubMed ID: 7417431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.