These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 9241865)

  • 1. Evaluation of critical body residue QSARs for predicting organic chemical toxicity to aquatic organisms.
    Barron MG; Anderson MJ; Lipton J; Dixon DG
    SAR QSAR Environ Res; 1997; 6(1-2):47-62. PubMed ID: 9241865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association between contaminant tissue residues and effects in aquatic organisms.
    Barron MG; Hansen JA; Lipton J
    Rev Environ Contam Toxicol; 2002; 173():1-37. PubMed ID: 11776748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms.
    McElroy AE; Barron MG; Beckvar N; Driscoll SB; Meador JP; Parkerton TF; Preuss TG; Steevens JA
    Integr Environ Assess Manag; 2011 Jan; 7(1):50-74. PubMed ID: 21184569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for deriving pesticide aquatic life criteria.
    TenBrook PL; Tjeerdema RS; Hann P; Karkoski J
    Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between exposure and dose in aquatic toxicity tests for organic chemicals.
    Mackay D; McCarty LS; Arnot JA
    Environ Toxicol Chem; 2014 Sep; 33(9):2038-46. PubMed ID: 24889496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: polar narcotic organics.
    McCarty LS; Mackay D; Smith AD; Ozburn GW; Dixon DG
    Ecotoxicol Environ Saf; 1993 Jun; 25(3):253-70. PubMed ID: 7691520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of quantitative structure--activity relationships for assessing the aquatic toxicity of phthalate esters.
    Parkerton TF; Konkel WJ
    Ecotoxicol Environ Saf; 2000 Jan; 45(1):61-78. PubMed ID: 10677269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting modes of toxic action from chemical structure: an overview.
    Bradbury SP
    SAR QSAR Environ Res; 1994; 2(1-2):89-104. PubMed ID: 8790641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of QSARs in risk management of existing chemicals.
    Verhaar HJ; van Leeuwen CJ; Bol J; Hermens JL
    SAR QSAR Environ Res; 1994; 2(1-2):39-58. PubMed ID: 8790639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The physicochemical basis of QSARs for baseline toxicity.
    Mackay D; Arnot JA; Petkova EP; Wallace KB; Call DJ; Brooke LT; Veith GD
    SAR QSAR Environ Res; 2009; 20(3-4):393-414. PubMed ID: 19544198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSARs for aquatic toxicity: celebrating, extending and displaying the pioneering contributions of Ferguson, Konemann and Veith.
    Mackay D; Arnot JA; Celsie A; Orazietti A; Parnis JM
    SAR QSAR Environ Res; 2014; 25(5):343-55. PubMed ID: 24762009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of exposure time and life expectancy in models for toxicity to aquatic organisms.
    Connell D; Yu J
    Mar Pollut Bull; 2008; 57(6-12):245-9. PubMed ID: 18471833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-linear modeling of bioconcentration using partition coefficients for narcotic chemicals.
    Dimitrov SD; Mekenyan OG; Walker JD
    SAR QSAR Environ Res; 2002 Mar; 13(1):177-84. PubMed ID: 12074386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narcosis due to environmental pollutants in aquatic organisms: residue-based toxicity, mechanisms, and membrane burdens.
    van Wezel AP; Opperhuizen A
    Crit Rev Toxicol; 1995; 25(3):255-79. PubMed ID: 7576154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical evaluation of the sediment effect concentrations for polychlorinated biphenyls.
    Beckert DS; Ginn TC
    Integr Environ Assess Manag; 2008 Apr; 4(2):156-70. PubMed ID: 17994918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis.
    Papa E; van der Wal L; Arnot JA; Gramatica P
    Sci Total Environ; 2014 Feb; 470-471():1040-6. PubMed ID: 24239825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration.
    DeForest DK; Brix KV; Adams WJ
    Aquat Toxicol; 2007 Aug; 84(2):236-46. PubMed ID: 17673306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical evaluation of chronic toxicity data on aquatic organisms for the hazard identification: the chemicals toxicity distribution approach.
    González-Doncel M; Ortiz J; Izquierdo JJ; Martín B; Sánchez P; Tarazona JV
    Chemosphere; 2006 May; 63(5):835-44. PubMed ID: 16169042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpreting aquatic toxicity QSARs: the significance of toxicant body residues at the pharmacologic endpoint.
    McCarty LS; Mackay D; Smith AD; Ozburn GW; Dixon DG
    Sci Total Environ; 1991 Dec; 109-110():515-25. PubMed ID: 1815370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.